

Going Mobile with
Magic xpa 3.x

Self-Paced Tutorial

Book ID: UTGMMXA30

Edition: 1.00, February 2015

Course ID: UCGMXPA3x

Magic University Official Courseware

 ii

The information in this manual/document is subject to change without prior notice and does not represent a commitment on the part of

Magic Software Enterprises Ltd.

Magic Software Enterprises Ltd. makes no representations or warranties with respect to the contents hereof and specifically disclaims any

implied warranties of merchantability or fitness for any particular purpose.

The software described in this document is furnished under a license agreement. The software may be used or copied only in accordance

with the terms and conditions of the license agreement. It is against the law to copy the software on any medium except as specifically

allowed in the license agreement.

No part of this manual and/or databases may be reproduced or transmitted in any form or by any means, electronic or mechanical,

including photocopying, recording or information recording and retrieval systems, for any purpose other than the purchaser’s personal
use, without the prior express written permission of Magic Software Enterprises Ltd.

All references made to third-party trademarks are for informational purposes only regarding compatibility with the products of Magic

Software Enterprises Ltd.

Unless otherwise noted, all names of companies, products, street addresses, and persons contained herein are part of a completely

fictitious scenario or scenarios and are designed solely to document the use of Magic xpa.

Magic® is a registered trademark of Magic Software Enterprises Ltd.

Btrieve® and Pervasive.SQL® are registered trademarks of Pervasive Software, Inc.

IBM®, Topview™, System i5/iSeries™, System i™, IBM i™, pSeries®, xSeries®, RISC System/6000®, DB2®, and WebSphere® are trademarks

or registered trademarks of IBM Corporation.

Microsoft®, FrontPage®, Windows™, WindowsNT™, ActiveX™, and Windows Mobile are trademarks or registered trademarks of Microsoft

Corporation.

Oracle® and OC4J® are registered trademarks of the Oracle Corporation and/or its affiliates.

Linux® is a registered trademark of Linus Torvalds.

UNIX® is a registered trademark of UNIX System Laboratories.

GLOBEtrotter® and FLEXlm® are registered trademarks of Macrovision Corporation.

Solaris™ and Sun ONE™ are trademarks of Sun Microsystems, Inc.

HP-UX® is a registered trademark of the Hewlett-Packard Company.

Red Hat® is a registered trademark of Red Hat, Inc.

WebLogic® is a registered trademark of BEA Systems.

Interstage® is a registered trademark of the Fujitsu Software Corporation.

JBoss™ is a trademark of JBoss Inc.

Systinet™ is a trademark of Systinet Corporation.

Android is a trademark of Google Inc.

BlackBerry® is a registered trademark of Research in Motion Limited.

iPod, iPad, iPhone, iTunes, and Mac are registered trademarks of Apple Inc.

Portions Copyright © 2002 James W. Newkirk, Michael C. Two, Alexei A. Vorontsov or Copyright © 2000-2002 Philip A. Craig

Clip art images copyright by Presentation Task Force®, a registered trademark of New Vision Technologies Inc.

This product uses the FreeImage open source image library. See http://freeimage.sourceforge.net for details.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/).

This product includes software developed by Computing Services at Carnegie Mellon University (http://www.cmu.edu/computing/).

Copyright © 1989, 1991, 1992, 2001 Carnegie Mellon University. All rights reserved.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://www.openssl.org/).

This product includes software that is Copyright © 1998, 1999, 2000 of the Thai Open Source Software Center Ltd. and Clark Cooper.

This product includes software that is Copyright © 2001-2002 of Networks Associates Technology, Inc All rights reserved.

This product includes software that is Copyright © 2001-2002 of Cambridge Broadband Ltd. All rights reserved.

This product includes software that is Copyright © 1999-2001 of The OpenLDAP Foundation, Redwood City, California, USA. All Rights

Reserved.

All other product names are trademarks or registered trademarks of their respective holders.

Going Mobile with Magic xpa 3.x

February 2015

Copyright © 2015 by Magic Software Enterprises Ltd. All rights reserved.

 i

Contents
Introduction... 1

About Magic xpa ... 1

About the Seminar ... 2

Seminar Prerequisites .. 2

Magic Software University .. 2

Setting Up the Mobile Clients .. 3

Mobile Design Mode .. 3

My First Magic Program ... 4

Mobile Preview Pane .. 4

Execution Properties File ... 5

Running the Program on a Mobile Device ... 6

How Does It Work? .. 8

Executing a Program Directly from the Studio (Android only) ... 8

Understanding the Client .. 11

About Mobile Devices .. 12

Magic xpa on a Mobile Device ... 13

Developing in RIA .. 13

Form Considerations ... 14

Window Types ... 14

Form Size .. 14

Placement .. 15

Supported Controls... 20

Edit Controls ... 21

Image Controls ... 21

Two-State Images .. 21

Button Controls ... 21

Tab Controls ... 21

Application Navigation .. 21

Navigation ... 21

Termination .. 22

 ii

Design Considerations .. 22

Status Bar .. 23

Colors and Fonts ... 23

Colors ... 23

Fonts ... 23

Adding a font manually ... 25

Summary ... 26

Advanced Controls .. 27

Tables ... 28

Landscape Mode .. 28

Mobile Events .. 29

Selection Lists ... 30

Selection Program ... 30

Selection Controls ... 30

Menus .. 30

Summary ... 31

Interacting with the Device .. 33

Mobile File System ... 34

Querying Device Characteristics .. 34

Finding the Device Location (GPS) .. 35

Camera Support .. 36

Gallery Support ... 36

Accessing the Mobile Devices’ Capabilities ... 37

Summary ... 38

Offline Implementation ... 39

Concept .. 40

How Does It Work? .. 41

Summary ... 42

Customization and Installation .. 43

Execution Properties File – Additional Information .. 44

Customizing the Application .. 44

Keystore File ... 46

 iii

APK File ... 46

Installing the Client on the Android Device or Emulator ... 47

Summary ... 48

Preparing the Testing Environment ... 49

Defining a Simulator ... 50

Android ... 50

Android SDK Manager .. 50

Android Virtual Device Manager .. 50

Installation on the Device ... 51

Using the Keyboard on the Device Simulator .. 52

Troubleshooting ... 52

Mobile device fails to communicate with the Web server ... 52

Execution properties file defined in the URL dialog is wrong 53

Debugging .. 53

Android ... 53

iOS ... 54

Summary ... 55

 iv

Understanding the Client 1

Introduction

Welcome to Magic Software University’s Going Mobile with Magic xpa 3.x self-paced

tutorial. We, at Magic Software University, hope that you will find this guide informative and

that it will assist you in getting started with this exciting product.

About Magic xpa
Magic xpa provides all aspects of the application development and deployment process

within a single end-to-end platform. It features a ready-made business application engine that

simplifies the code-writing process and enables you to deploy to market faster, using fewer

resources.

Applications developed using Magic xpa typically have fewer coding mistakes, undergo more

thorough prototyping, benefit from greater business-side input and optimization, and can be

more easily adapted to changing business needs.

Magic xpa enables you to focus more on the business logic of the application and less on

what is happening behind the scenes.

Install Magic xpa 3.x.

Please ensure that your computer meets the hardware requirements listed

on the following page.

If you encounter any problems, contact msu@magicsoftware.com.

Understanding the Client 2

About the Seminar
The course is intended for people with a working knowledge of developing RIA applications

who want to know how to successfully develop applications for use on mobile devices while

using Magic xpa.

During the course you will learn about how Magic xpa works with mobile devices.

By the end of the course you will have created programs that demonstrate the ease of use of

the Magic xpa and mobile integration.

Seminar Prerequisites
Before you start with the seminar there is basic knowledge that you need to have:

Development knowledge Working knowledge of Magic xpa while developing RIA
applications.

Your computer must also meet some basic requirements:

Hardware and Software Windows 7 and later.

 You will need IIS 7 installed on your computer.
 .NET framework V4.0 (or above) installed on your

computer.
 Magic xpa 3.0 or later.
 A mobile device.
 The Magic xpa client installed on the mobile device.

You can download it from the Google Play store or
from the App Store.

Magic Software University
MSU offers various courses that may be of interest to you. To see the current offering, open the

following link:

http://www.magicsoftware.com/en/services/?catID=59&pageID=45&subPageID=756

http://www.magicsoftware.com/en/services/?catID=59&pageID=45&subPageID=756

Setting Up the Mobile Clients 3

Setting Up the Mobile Clients
Before we start discussing the development paradigm of mobile applications and the

differences between developing a desktop and a mobile application, we will start by setting

the mobile environment, so that you will be able to run a Magic application on your mobile

device.

Mobile Design Mode
When designing a desktop application, the physical screen is normally a landscape-type

screen, meaning that the width is greater than the height. However, on mobile devices this is

not the initial mode. The initial mode is portrait-type in which the height is greater. You need

to take this issue into consideration. As an example, a portrait form will not enable you to

display a long row of text. You will need to consider using a multi-edit box with word-wrap. In

addition, the device size is much smaller than desktop applications and the controls are

larger.

Magic xpa allows you to easily develop mobile applications by using a Mobile Design mode.

When the Mobile Design mode is enabled and controls are added to the form, some of the
properties will be set with different default values, which better support the mobile platforms.

You activate this feature by clicking the Mobile Design Mode button from the toolbar or by
opening the Options menu and selecting the Mobile Design Mode option.

The following properties differ from the non-Mobile Design mode:

 The screen size is smaller. This is because it is recommended to design a screen for the
smallest device and use placement to increase the size of the controls for larger devices.

 The size of controls is larger.
 The color of the table is defined according to the table color and not the column color (in

the Set Table Color property).
 The Table control will not show scrollbars.

Lesson 1

Setting Up the Mobile Clients 4

 The Group control will not have a default text.
 The Radio control will have a button appearance.
 The Line control placed in a container control will be stretched horizontally to fill the

control.
 The width placement of the Edit, Group and Line control will be set to 100%. Therefore,

by default, these controls will be resized.
 Tab controls will be placed on the entire form area.
 An Image control will have a different size when dropped on the form or in a Table

control.

My First Magic Program
We’ll start with a simple “Hello World” program:

1. Activate the Mobile Design mode as explained above.

2. Open the demo application.

3. Create a program named Hello World and give it a Public name of start.

4. Select the External box.

5. This is a RIA program, so in the Task Properties dialog box, set the Task Type to Rich

Client.

6. Add a Virtual variable named Sample text, which will be Alpha with a length of 20.

Provide an initial text of hello world.

7. Zoom into the Form Designer.

8. Now drop the Sample text variable on the form.

9. If the Mobile Preview pane is not visible, it is advised to show it as detailed below.

Mobile Preview Pane

When developing for mobile platforms, you can preview the Display forms that you are
developing by using the Mobile Form Preview pane. You access this by clicking the mobile

button from the toolbar or by opening the Form menu and selecting the Mobile Preview
Pane option.

This lets you play around with the placement and size of the controls and see how the controls
will appear on various mobile devices. The form and control properties related to placement
and size are the properties that are supported for this preview pane.

From the floating pane you can select which mobile device you want to preview, such as
iPhone 6. Next to the name of the device, you will see the dimensions of the device.

Setting Up the Mobile Clients 5

The options that appear here are defined in the Magic.ini file's [MAGIC_DEVICES] section or
in the Mobile Device repository, which you can access from Options > Settings > Mobile
Devices.

You can also change the orientation of the device and change the zoom level.

Controls that are not supported for mobile devices, appear as a crossed out rectangle:

.

The program is now ready for execution.

This is a Rich Client program, so if you execute the program using the F7 key, it will execute in

the RIA environment. So, to execute the program, you need to run the project.

10. Run the project (CTRL+F7).

The project is now ready to be executed on your mobile device.

Execution Properties File
To execute the application on your mobile device, you need to tell the client where the server

is located and which application and program need to be executed.

This is done by defining an execution.properties file.

This file can be later be embedded in your client or placed on your server accessed you’re
your client using a URL.

Setting Up the Mobile Clients 6

Follow these steps to define the execution properties file:

1. Copy the devprops.txt file from the RIAModules\Android folder to a folder on your

server that has an IIS alias so that it will be exposed for use. You can use for example

the Scripts folder under the Magic folder, which is exposed by default.

2. Open the file in a text editor and update the properties as follows:

<properties>

<property key="protocol" val="http"/> The protocol used. Leave this as http.

<property key="server" val="10.1.10.75"/> Your server. It is recommended to use
the IP.

<property key="requester"
val="MagicScripts/MGrqispi.dll"/>

The address of the requester. Make sure
that the alias name refers to the scripts
folder.

<property key="appname" val="demo"/> The application name. Write the demo
value or your application name if you
used another application.

<property key="prgname" val="start"/> The public name of the program that
should run upon execution. Write the
start value or your start program’s public
name if you used another name.

</properties>

The properties file does not need to have the txt extension. You can

use any extension you choose as long as you set the MIME type on

the server so that the mobile devices will be able to open the file.

It also does not need to be called devprops.

Running the Program on a Mobile Device
The first step in running your application on the mobile device is to install the client application

on the mobile device.

At this stage, we will use a generic Magic xpa client application available on the Google Play

store and the App Store.

Of course you can create your own client application with your own application name and

Setting Up the Mobile Clients 7

logo. We will discuss this later on in the course.

1. After you install the client application on your device, start it by double clicking on the

application icon.

When the program is run initially, you will receive the following dialog box, requiring you to

enter the URL of a details file. You will also receive this dialog box if the URL file is not found

or accessible. (This dialog box will not appear for your users in your customized application.)

2. You can enter the following location (assuming

you used the magicscripts alias):

http://<ip address>/magicscripts/devprops.txt.

Note: Make sure that the mobile device has access to

this URL. In most cases, the development server is not exposed to the outside world. In these

cases, the mobile device should be connected to the same network as the development server

using WiFi. You can easily check it out by opening a

browser and using the address above as the URL. You

should see the file’s content.

3. After writing the URL, click OK and the Hello

World program will appear:

Congratulations. You have just created and executed

your first program for a mobile device.

? If you want to run another program as the start program, how will you

implement this?

There are a few ways of implementing this, such as:

 In the Program repository, remove the start public name from the Hello World program
and add it to the requested program. Do not forget to select the Expose option. This is a
very simple method.

 Add a public name to the requested program, such as orders and in the devprops file,
change the <property key="prgname" val="start"/> to <property key="prgname"
val="orders"/>
Note: It is not always feasible to use this option and you will understand why later in this
course.

Setting Up the Mobile Clients 8

 Execute it directly from the Studio (on Android devices) as explained later on.

How Does It Work?
As this is a Rich Client application, it works in a similar manner as other RIA applications.

When the mobile client application loads it searches for the execution details. The execution

details file is retrieved in one of the following two methods:

 Opening a dialog box to receive the URL of the file as you did in this exercise.
 Embedding the details with the client in an execution.properties file. You will learn more

about this in the lesson about customization.

The client reads the content of the file to find the address of the server, the name of the

application and the name of the initial program. This is the reason you were instructed to

define the name of the application as demo and the program as start.

The process now behaves like any other Rich Client application.

Executing a Program Directly from the Studio (Android
only)

You can run a program or project on an Android device or simulator directly from the Studio

by first pressing in the Execution on Android toggle button. You can do this from the
Magic xpa toolbar or the Debug menu.

Once the button appears pressed in, you can execute your program or project on an Android
device directly from the Studio:

1. Press F7 to execute a Rich Client program. This will switch the engine to Runtime mode
and launch the application on the mobile device or simulator using the selected
program as the start program.

2. Press Ctrl+F7 to execute the project. This will switch the engine to Runtime mode and
launch the application on the mobile device or simulator using the start program that is
defined in the execution properties file.

Setting Up the Mobile Clients 9

For this to work, you should first:

1. Install the application on the mobile device or simulator.
You can use the client from the Google Play store or install the generic MagicDev.apk,
which is available in the RIAModules\Android folder. Refer to the Installing the client
on the Android Device or Emulator section in the Customizing the Application lesson.

2. Connect the device to your network so that the application will be able to connect to
the Magic xpa server to run the project.

3. From the Android settings menu, enable the USB Debugging option.
4. If you are using a device, connect the device to the PC using a USB cable.
5. In some cases, you will need to install the generic Google USB driver (from the

Android SDK Manager, install the Google USB Driver package from the Extras folder)
or the driver that came with the device.

6. If you used a custom client or the store client – Define the application package name in
the Run.bat file located in the RIAModules\Android folder under the installation folder.

To do it, open the file using a text editor and change the value of the PackageName
variable to your package name, as it is defined in the settings.properties file.

By default, the value is set to com.magicsoftware.magicdev in order to run the
MagicDev.APK client.

If you are using the store client, set the name to com.magicsoftware.richclient.

To check if your PC can access your device, open the command prompt, navigate to the
RIAModules\Utils\ADB folder under the installation folder and execute the following
command: adb devices.

You should see your device in the devices list.

Note: If the server on which Magic xpa is running is not defined in DNS, the Android
mobile client will fail to access the Magic xpa server, since the device cannot
translate the machine name to the IP address and you will get the following
error: "Unable to resolve host name". If you encounter this error, you need to set
the full URL with your machine's IP address in the HTTP Requester environment
setting. For example: http://192.168.0.111/magicscripts/MGrqispi.dll.

Usually, when using the Genymotion simulator, you can define the following
value as the IP address: http://192.168.56.1/magicscripts/MGrqispi.dll
(192.168.56.1 is the default host IP address that the Genymotion VirtualBox
supplies).

Setting Up the Mobile Clients 10

Understanding the Client 11

Understanding the Client
Developing mobile RIA applications using Magic xpa requires the same skill set as developing

desktop RIA applications. However, since the user interface and expected user experience are

significantly different from a desktop computer, there are important differences that need to be

taken into account when designing the application screens and planning the user interaction.

Devices differ in screen size, fonts, expected interaction device features (such as a camera

and GPS), security related features and more. This lesson will give you a better understanding

of the client devices.

This lesson covers various topics including:

 Form considerations
 Design considerations
 Application navigation
 Supported controls

Lesson 2

Understanding the Client 12

About Mobile Devices
When you start developing for mobile devices, you will notice that there are a number of

characteristics that you will need to take into consideration.

iOS and Android devices each have different characteristics when it comes to displaying

information and enabling the user to enter information. You will learn more about this during

the seminar.

 Screen sizes and orientation – Mobile devices have various resolutions and screen sizes in
both landscape and portrait orientations.

 Keyboard devices – Some mobile devices have a full QWERTY keyboard. In addition to a
keyboard, some devices have a dedicated Menu key, an Esc key and a trackpad or
trackball that are equivalent to the desktop keyboard arrow keys. The trackpad also
provides a dedicated Fire action when pressed. Keyboard-only devices have a fixed
screen orientation and cannot be rotated.

 Touch devices – Some mobile devices have a touch screen, some in addition to a full
keyboard, and some without a keyboard. Touch devices support screen rotation and
provide an on-screen virtual keyboard when a full keyboard is not available.

 Windowing model – Mobile devices support a simple stacked window model. Each
application can open multiple windows, but each new window is stacked on top of the
previous windows and is modal. There is no mouse pointer and therefore the end user has
no control over the window, meaning that it cannot be resized or moved. When an
application is run, its main window (and subsequent stacked windows) occupies the entire
device screen.

 Form navigation using touch keyboard – Touch devices use an on-screen virtual keyboard.
Some devices rely on tapping on the controls to navigate between the fields while others
have Tab functionality in the virtual keyboard. The navigation inside an Edit control is
made using a long press on the field content.

 Context menu – The context menu is an important and central user interaction tool. Since
the screen size is relatively small, it is common to perform most tasks using the context
menu, instead of wasting screen real-estate on buttons and on-screen menus.

 Input modes – The Edit control is always in Insert mode. There is no equivalent Overwrite
mode on the mobile devices.

 Running in the background – The mobile devices’ OS is a multi-tasking operating system
meaning that each application can run either in the foreground or in the background. The
end user can see the running applications and switch between them. An application
running in the background is not suspended and continues to run, but does not have
access to the screen.

Understanding the Client 13

Magic xpa on a Mobile Device
When you decide to deploy on a mobile device, there are a few methods of developing your

application so that it may be deployed on the device:

 Web application – A Browser application using the mobile internet browser. There are
advantages to this method in that if you already have a browser application, it can
already be deployed. Your application will not look like a native mobile application. You
will also have limited, if any, access to the mobile’s functionality, such as the camera.

 Hybrid – The interface is a mixture of a native application, JS and HTML. As an example,
you may be using a Browser control to display a PDF. In this case, you have local access
to the device.

 Native – This is a native mobile interface with full access to the device.

Magic xpa enables you to develop whichever method you select. This seminar will deal with

the native application.

Developing in RIA
Developing a RIA application for a mobile device, you use the same skills that you use for a

regular RIA application. The difference being that you have to take into account a smaller

sized screen and different operating systems.

Each device has its own native look and feel. The preferred way to develop an application for

a mobile device is to design your application with a native look and feel. You can define your

program so that it has a context menu, but that is of little use if your device is an iPhone in

which there is no context menu. Your challenge is not the technology, but the display. You do

not need to worry about Java for Android or Objective C for iOS. You will see this later on in

this course.

Understanding the Client 14

Form Considerations

Window Types

All mobile forms are modal by definition. There are no non-modal windows and focus cannot

move between open windows. When defining Window Types in the Form Designer, all form

types are ignored and the Modal form type is used.

 Full-screen forms – By default, the form will automatically be full screen, taking up the
entire screen area of the device. All position and size properties of the form are ignored.
This means that when you design for a device such as Android or iOS, which have both a
mobile device and a tablet, the screens will be expanded or decreased accordingly and
will have a different look.

 Pop-up forms – The form will be opened as a popup window (not full screen) if the Pop Up
form property is set to True. The location of the pop-up window is defined in the Startup
Position form property as follows:

o The Customized value will open the popup window in the location defined by the X
and Y form properties.

o The Centered to... and OS Default … values will open the popup window as
centered on the device.

Each application must start with a full-screen form that remains open

for the duration of the session. When the initial program is closed, the

application terminates. You can open additional forms, but if the

initial program closes, all programs will terminate.

Form Size

The RIA client supports both form scrolling and placement. However, when developing an

application that needs to run on devices with significantly different screen sizes, such as the

iPhone and iPad, it is best practice to develop two separate forms, since the number of

controls will be different on each device.

Placement should be used for each form so that it can be displayed on different devices.

The Width and Height Dialog unit values of a full screen form with a title bar are:

 For iPhone: 18.75 x 37.5
 For iPad: 53.5 x 111.5
 For Android devices, each client is different.

You may decide that you want different forms for different devices or a specific form for a

mobile phone and a different form for a tablet. The ClientOSEnvGet function enables you to

Understanding the Client 15

query for specific device capabilities or features and use it for conditional execution of logic.

You will learn more about this in a later lesson. Here are some properties that you can use:

 ClientOSEnvGet ('device_os') – returns the device’s operating system.
 ClientOSEnvGet ('device_orientation') – returns the device’s screen orientation.
 ClientOSEnvGet ('device_screen-width') – returns the device’s screen width in portrait

mode in pixels.
 ClientOSEnvGet ('device_screen-height') – returns the device’s screen height in portrait

mode in pixels.

Please note that the values are returned in pixels.

Placement
Often you design your form and the controls on the form according to a fixed size. You place

all the controls on the form relative to one another in the Form Designer and then you run the

program. In a Windows environment that is often satisfactory.

However what happens when the user increases the size of the form? This is a built-in feature

of the Windows operating system. This can happen when the user drags one of the sides of

the form or even the bottom right corner. The form simply gets increased. The image below

shows an example of what the end user will see when they use the bottom-right corner to

increase the size of the form.

This is not what you would want to happen. The table has a scrollbar and only displays a few

rows. You would expect that the table increase in size and the push button move accordingly.

This feature is handled by a property named Placement.

Understanding the Client 16

Increasing and decreasing a form is a typical windows movement, but how does that relate to

the mobile world? When you move from Portrait mode to Landscape mode you are in fact

invoking a change in size of the dimensions. You would want the table size to increase or

decrease accordingly. You would want control sizes to be changed. What about when you

move from a hand-held to a tablet or an Android device in which every device has different

dimensions. Placement is very important in these cases.

The examples here will be shown using regular Rich Client programs.

The Placement property determines whether or not controls are resized when a parent form or

parent container control is resized. When a control’s
Placement property equals zero, the relative size of

the control does not change when the size of the

parent container is changed in runtime.

When the Placement property is larger than zero, the

relative size changes proportionally when the size of the parent container changes in runtime.

The placement of a control is governed by four values.

The X and Y values determine how the control moves itself when the form is resized. The value

is in percentages. When you set the value as zero, you are defining that the control stays in

place. When you set a value of 100, you are saying that the control moves with the form for

its full placement.

You can see this with a simple exercise using a regular Rich Client program in which you will

define that the form’s push button remains relative to the form when it is resized. To do this:

1. Define a data source named Customers with the following columns:

 Customer ID
 Customer Name
 Address

Understanding the Client 17

2. Add a Rich Client program named Customers.

3. Zoom into the Customers program.

4. Define the Main Source as the Customers data source and add the Customer ID and

Customer Name columns from step 1.

5. Zoom into the Form Designer and add a Table control and drop Customer ID and

Customer Name onto the table.

6. Add a Button control. Open the control property sheet.

7. From the Event Type property, select Internal.

8. Set the Event property to the internal event, Exit.

9. Click on the Placement property and then click the Zoom button.

10. Set the value of 100 in the X property and the value of 100 in the Y property.

11. Click OK. The Placement property will show: 100,0,100,0.

12. Execute the program.

When you increase the form, it will look similar

to the image on the right.

As you can see, the push button remains fixed in

position, in the bottom right corner.

Notice that the table is still fixed.

In the Placement property, the Width and Height

values determine how the control resizes itself when the form is resized. The value is in

percentages. When you set the value as zero, you are defining that the control will not be

resized. When you set a value of 100, you are saying that the control resizes itself with the

form.

Understanding the Client 18

As an example, you will increase the size of the table when the form is increased. To do this:

1. Zoom into the Customers program and zoom into the Form Designer.

2. Park on the table.

3. Open the control property sheet.

4. Click on the Placement property and then click the Zoom button.

5. Set the value of 100 in the Width property and the value of 100 in the Height

property.

6. Click OK. The Placement property will show: 0,100,0,100.

7. Execute the program.

If you increase or decrease the form you will see the changes. When you increased the form,

the table also increased. You saw more records in the table. This is in essence what will

happen when you move from Landscape mode to Portrait mode on your mobile device.

What you saw here was:

 Increasing one control, the Table control, when the form itself increases.
 Have a control, the push button, remain in the same place relative to the bottom of the

form when the form is increased.

The controls will never get smaller than their original size. So if you

are expecting a form to be resized, create each control at the

smallest required size.

The issue of placement gets more complicated when you have more than one control on the

form and you want the controls to increase in width, when the form is increased. This is

important when you have a large control, such as an Edit control, that you cannot initially

display all the information, but when you increase the form you find that you have enough

space to display more information.

The image below shows a very simple example:

When you increase the group container, you would expect that each control would increase

in width. The controls would move and resize in the following way:

Understanding the Client 19

 The Group container will increase in width and height.
 The ID control will increase in size.
 The Name control will move to the right to make way for the increase in size of the ID

control and will also increase in size.
 The Address control increases in a similar way to the Name control, but you need to take

into account that the Name control both moved to the right and increased in size.

To do this:

1. Add a Rich Client program named Customers Group.

2. Zoom into the Customers Group program.

3. Define the Main Source as the Customers data source and add:

 Customer ID
 Customer Name
 Address

4. Zoom into the Form Designer and add a Group control onto the form.

5. Park on the Group control and zoom into the Placement property. Set the Width

property to 100 and the Height property to 100.

6. You can name the Group control as Customers.

7. Drop the Customer ID Edit control onto the Group control. Set the Width property to

32. This control remains in place, but it must increase in size. Remember that we have

three controls that need to increase in size, so each control will increase in size by a

third. Zoom into the Placement property. Set the Width property to 33. The setting will

be: 0,33,0,0.

8. Drop the Name Edit control onto the Group control. Set the Width property to 40.

Now comes the fun part. The ID control increased in size by 33%, so the Left or X

offset of this control must move by 33%. It must also increase in size by 33%. Zoom

into the Placement property. Set the X property to 33. Set the Width property to 33.

The setting will be: 33,33,0,0.

9. Drop the Address Edit control onto the Group control. Set the Width property to 24.

The Name control moved 33% and increased in size by 33%, so the Left or X offset of

the Address control must take both into consideration. Therefore it must move by 66%.

It must also increase in size by 33%. Zoom from the Placement property. Set the X

property to 33. Set the Width property to 33. The setting will be: 66,33,0,0.

When you increase the size of the form, the form will now look similar to the image below.

Understanding the Client 20

As a summary, when resizing the form:

 Defining values of X=100 and Y=100 will keep the control in the bottom right position.
This is mostly used for buttons that should remain in that position, regardless of the size of
the form.

 Defining values of Width=100 will resize the control horizontally. This is mostly used when
the control size is smaller than its content.

 Defining values of X=100 will move the control horizontally. This is mostly used when this
control is displayed after a control that has a Width placement of 100%.

 When you resize a control, you need to take into account the starting offset of the
adjacent controls.

In the mobile world you have many different sizes and so you cannot develop, one size fits all.

Therefore placement is very important. Bear in mind when designing your form, that when you

design for a tablet and want the same layout on the mobile, such as developing for an iPad

and viewing on an iPhone, the form may be too small and user-unfriendly.

On mobile devices, the Magic xpa placement mechanism is implemented in a specific way to

accommodate different device resolutions and to handle device rotation. The placement

mechanism is not relevant for pop-up forms. It works as follows:

 Resize on open – Before opening the form, the form size as defined by the developer is
compared with the current screen size. The difference between the sizes on each axis is
considered as a window resize, and will activate the placement mechanism on all
controls. This enables forms designed for smaller screen resolutions to “expand” in higher
resolutions.

 Resize on rotate – On touch devices, it is possible to rotate the device, effectively changing
the resolution on the fly, such as from 480x360 to 360x480. In such a case, the currently
displayed form will consider the new resolution as a window resize event, and will
activate the placement mechanism on all controls.

Supported Controls
Controls on mobile devices are different than the Windows controls in their appearance,

minimum size and space padding. They are also different on each device. The size of the

control will change according to the device’s DPI (dots per inch). As a result, the size of the
controls defined using the Magic xpa Fit to Size option may not be large enough to display

the entire control text due to the larger padding on the mobile device controls.

The Rich Text, Rich Edit, Tree, List Box and .NET controls are not supported on mobile devices.

Understanding the Client 21

Edit Controls

You can control the layout of the keyboard by using the following properties in the Edit

control:

 Keyboard Type – Defines the keyboard content.
 Keyboard Return Key – Defines the return key value and action.
 Allow Suggestions – Defines whether the suggestion text will be used.

Image Controls

Images with the Copied style do not change and use the same amount of pixels as in the

image, so the images will appear in different sizes when used on devices with different DPIs.

It is best practice to use Distorted Scaling or Scaled to Fit styles to attain the desired

appearance.

Two-State Images

You can create two-state images. This means that by clicking on the image on the mobile
device, the image will switch to an alternate image. This is done by setting the Image List File
Name property in the Check Box control's Mobile section.

You can also create multiple two-state images. This is done by setting the Image List File Name
property in the Radio Button control's Mobile section.

Button Controls

The push button is not parkable. The current control will remain the parked control.

Tab Controls

The Tab control appears as a tab bar on Android and iOS devices. The tab bar will appear in

full screen; therefore, when developing an app, it is recommended to stretch the Tab control

across the entire form. In general, the tab bar's functionality is based on the device's default

behavior. You can find more information about this in the Magic xpa Help.

Application Navigation

Navigation

Mobile devices can support a simple stacked window model. Each application can open

multiple windows, but each new window is stacked on top of previous windows and is

inherently modal. Closing the current window and returning to the previous window can be

done either by raising the internal Exit event or using the built-in capabilities of the mobile

devices:

Understanding the Client 22

 Android – using the ‘Back’ button
 iOS – using the ‘Back’ button on the title bar. If you decide not to display a system menu,

then you need to raise the Exit event yourself.

Termination

The application can be closed either by raising the internal Exit System event or using the built-

in capabilities of the mobile devices:

 Android – using the ‘Back’ button from the first screen of the application
 iOS – using the close button (‘X’) on the window title bar from the first screen of the

application (if the window was defined to open a System menu)

When pressing the mobile device’s home button, the application will remain running in the
background.

Note:

When you terminate the application in other ways (such as from the

Task Manager), the context on the server will not be released

automatically. It will be released only after the context timeout period.

Design Considerations
Magic enables you to develop for mobile devices in the same manner that you developed for

Windows with the same look and feel and functionality. However, when developing for

mobile devices you want your application to look like other mobile applications, meaning

native applications.

As an example of designing your screen for a mobile device, consider the virtual keyboard

that was opened when you started editing and ask yourself:

 How do you add a new record? The Magic xpa shortcut is F4.
 How do you delete a record? The Magic xpa shortcut is F3.
 How do you move to the next record, or the previous record (Page Up / Page Down)?
 What about query / sort / range, etc.?

When you look at your mobile contacts or mobile emails or other programs, you normally

have a list and when you want to add something you have a button for creating a record. The

same for editing; you generally have a button that opens a different form for editing. You will

practice this in the example in this lesson and the next lesson when you learn about tables,

combo boxes and other controls.

Understanding the Client 23

The end-user functionality component is usually not needed for mobile

device applications. Therefore, it is recommended to remove the

default entry, UserFunctionality, from the CRR when developing a

mobile application.

Status Bar

You may have noticed that there is no status bar. Take this into account when displaying

messages.

Colors and Fonts

Whenever you design your form, you always take into account colors and fonts.

Colors

Mobile devices use the same Magic xpa color table as other RIA clients. Each color must

specify the exact RGB value for both background and foreground. You do this in the Magic

xpa color table. However, take into account that the mobile devices do not support the

Windows “System” colors.

Mobile devices also support transparent and opaque colors.

If a system color is selected, the mobile device will display its own

default color for the form or control. If you want to use a specific

color, you need to implicitly define the foreground and background

colors.

For some controls, to see the border, you must use a color with a non-

system color.

For Combo Box controls, to see the arrow you must use a color with a

system color.

Fonts

The Magic xpa mobile RIA client uses the same font table as other interfaces. Each device has

a set of available fonts that are usually different from the fonts found on a Windows desktop

and different from one another. If the font defined in the font table is not found on the mobile

device, the default font will be used with the size defined in the font table.

When you develop, you need to take into consideration whether you want to use specific fonts

for each device or enable the device to use the defaults.

Understanding the Client 24

If you use different fonts for different devices, you will need to use an

expression for the font of a control. You can use the ClientOSEnvGet

function in the expression:

IF (ClientOSEnvGet ('device_os')='android', '1','4')

You may decide that working with the CASE function will better suit

your application.

On Android devices you need to send the font family name and the style of the font you want.

The system will find a matching font for you. For example, to use a Droid Serif font use:

"Android Serif bold,Serif,12,0,0". You can see the font list in the System/Fonts folder in the

device file system.

You cannot select mobile fonts using the Windows fonts dialog box. If you decide to use

separate font entries for each device, you need to edit the fonts table manually using an

external text editor such as Notepad.

For example, Android uses a font known as Sans:

1. Open the fnt_rnt.eng file in a text editor. By default, this file is in the support folder of

the installation.

2. Add the following line: Android Edit Labels,sans,8,0,0,Bold

3. Save the file.

4. Close the demo application and reopen it so that the new font list will be reloaded.

5. Zoom into the Hello World program.

6. Zoom into the Form Designer and for the Label control, select the new font. Because

the font is now bold, you need to increase the width.

7. Execute the project.

You will see that the label is now bold.

Understanding the Client 25

Adding a font manually

When you added the font manually, you added the line:

Android Edit Labels,sans,8,0,0,Bold to the Font list.

Each entry in the list is defined in the following way:

The attributes are the Font Style and the Effects. The dialog box above will be translated to the

following entry in the Font list:

Understanding the Client 26

Summary
You were introduced to the new world of developing mobile applications.

You learned that you can continue developing your application in the same way that you

developed for desktop applications, but that it is good practice to take into account the

limitations of the mobile device, which are smaller devices and are also not Windows devices.

You learned to take into account the sizes, the colors and the fonts on the mobile device and

you learned how to get information from the device, such as its operating system. You can use

this knowledge to define that certain programs will not run on certain devices.

This lesson can be summarized by saying that when developing for a mobile device, think

native!

Advanced Controls 27

Advanced Controls
In the previous lesson you learned about the mobile client and some of the limitations when

working with different clients. You also defined a simple program. One of the more important

messages in the previous lesson was that you need to consider the native environment when

you develop for the mobile. An Edit control with a long line of text will not be visible when it is

displayed on a small mobile screen in portrait mode.

As you know when working with Magic xpa, when you design a program, you are not only

using simple controls such as a Button, an Edit, or a Text control, but you also display data in

a table, select data from a list and others. You will learn about this in this lesson.

This lesson covers various topics including:

 Tables
 Events
 Selection Lists
 Menus

Lesson 3

Advanced Controls 28

Tables
As you learned, developing for a mobile device has limitations but it also provides you with

some advantages. When you use a Table control in Magic xpa, you normally add as many

columns of data as you need. If there is not enough room to display the table, you have a

horizontal scrollbar on the form.

On mobile devices, horizontal scrolling is allowed on the form only. Horizontal scrolling on

the content of the table is not possible.

How many of you have developed a one-to-many form such as an order form in which the

order lines are displayed in a table? To create a new order-line, you instructed the user to click

F4 and you were able to enter a new line. The Create Line event is supported by Magic xpa,

but there is no F4 key on a mobile phone. This is also not the accepted method for the user

display when working with a mobile device. Remember also that when working with an

Android in the one-to-many scenario, you will not have a vertical scrollbar.

Apple wrote a document known as Human Interface Guidelines (HIG) in which they defined a

table as a view that presents data in a single-column list of multiple rows. Look at the Contacts

or Emails. These are guidelines and so you define the interface as you want. As an example,

eBay displays three-columns: image, description and current bid.

The bottom line is that Magic xpa enables you to develop the display that you want, but it is

advisable to work with the guidelines of the device or at least develop a display that fits all

guidelines.

Landscape Mode

When you rotate your device to Landscape mode, you are able to view more information on

each line. When you use placement on the table you are able to view more of the text. For

example, have a look at the email list below:

Advanced Controls 29

You also have the option of displaying more information on the table. Remember that you can
use the ClientOSEnvGet ('device_orientation') to know whether you are currently in Portrait or
Landscape mode.

Mobile Events
When working with a mobile device, you use your finger as the mouse; your touch is my

command. The touch events are mapped to Magic xpa events as follows:

 The mobile “Touch”, “Click” or “Tap” events are equivalent to the Magic xpa mouse-click
event. These events move the focus between fields on a form. Touching on selection
controls changes the controls’ selection. Touching on buttons triggers the buttons’ event.

 The “Press” or “Hover” events trigger a Magic xpa OK internal event. This event can then
be handled by the developer.

 “Swipe” events scroll within the form or control.

Advanced Controls 30

Selection Lists
A selection list enables you to select a value from a list. This can be a regular control such as

the combo box, check box and the radio button, or a selection program that is defined in

Magic xpa as a Selection program. Remember that the radio button is not supported on all

platforms.

Selection Program

In Magic xpa Online programs and RIA programs, pressing Enter or the double-clicking action

raises the Select event. On your mobile device, you do not have an Enter button and you are

unable to double-click. You need to find other methods to raise the Select event. Two methods

you can implement are:

 Use a push button that raises the Select event.
 Trap the OK event. This is raised by the mobile “Press” or “Hover” events. Within the

handler you can raise the Select event.

Remember that the selection program is a modal full screen program, unless you define it as a

Floating program.

Selection Controls

Selection controls, such as the Combo Box, appear differently on each device. This is not

something you can control as this is defined by the operating system of the device itself. It

does, however, provide a native look and feel.

? Give some thought as to how you are going to implement the
modification of a field.

Menus
When developing any system, defining the Menu system is an integral part of the screen

design as the menus allow quick access to functionality. A menu system takes up valuable

screen real estate and is impractical in small devices. The Windows pulldown menu is

unsupported in mobile operating systems since there is no MDI On mobile devices. Therefore,

it is recommended to remove the Default pulldown menu entry when developing a mobile

application.

However, the context menu is an important and central user interaction tool. As the screen size

is relatively small, it is common to perform most tasks using the context menu, instead of

“wasting” screen space on buttons and on-screen menus.

In Magic xpa, in Android devices, context menus are available at both the form and the

control level. On iOS devices, context menus are only available at the form level.

Advanced Controls 31

Summary
In this lesson you learned more about how to interact with the mobile device.

You learned about the table and some guidelines provided by mobile manufacturers.

You learned about some events that are unique to mobile devices and how they are defined in

Magic xpa.

You learned about selection lists and you were given some guidelines about menus.

In the next lesson you will learn more about interacting with the mobile device.

Advanced Controls 32

Interacting with the Device 33

Interacting with the Device
The advantage of working with a mobile device is that you are able to use the device’s special
features such as the GPS and camera.

This lesson covers various topics including:

 Interacting with the file system
 Fetching information from the device
 Using the GPS and camera

Lesson 4

Interacting with the Device 34

Mobile File System
You can access the mobile device’s file system using Magic xpa functions. The naming
conventions for local folders and file names are according to the device’s OS:

 Names are not case-sensitive.
 Folder separators are defined using a slash mark (/).

Access to the different device folders depends on the device. For example:

 On iOS, the access is allowed only to a temp folder provided by the OS. When using the
ClientFileXXX functions with a relative client filename, the file folder will be the temp folder.
When using these functions with a full path, it is recommended to use
ClientOSEnvGet('temp') to retrieve the temp folder.

 On Android, you can access different folders.

Querying Device Characteristics
The ClientOSEnvGet function enables you to query for specific device capabilities or features

and use it for conditional execution of logic. You already saw examples of this in previous

lessons.

The syntax is: ClientOSEnvGet ('keyword')

Here are the keywords that may be used within the ClientOSEnvGet function:

Keyword Description

device_os Returns the device’s operating system.

device_screen-width Returns the device’s screen width in Portrait mode in pixels.

device_screen-height Returns the device’s screen height in Portrait mode in pixels.

device_physical-width Returns the device’s physical screen width in portrait mode
in inches.

device_physical-height Returns the device’s physical screen height in portrait mode
in inches.

device_orientation Returns the device’s screen orientation.

device_os-version Returns the device’s OS version number.

device_model Returns the device’s model number or name.

device_touch Returns “1” if the device has a touch screen.

temp Returns the temp folder on the device.

device_location Returns the current device’s location.

Interacting with the Device 35

Keyword Description

device_magic_version Returns the RIA client version number.

device_udf|getargs Returns the query parameters when the application was
launched from another application.

device_udf|getpushid Returns the device ID, which can be used for sending push
notifications to the device.

device_udf|my_string Calls a user defined function.

device_resource-folder Returns the value of the resource folder.

On Android devices, you can also use Java predefined keys to get additional information, for

example: ClientOSEnvGet ('java.io.tmpdir'). For more information, refer to:

http://developer.android.com/reference/java/lang/System.html#getProperty(java.lang.String)

Finding the Device Location (GPS)
The ClientOSEnvGet function can also be used to query the current device location using the

internal or connected GPS device.

ClientOSEnvGet ('device_location') – returns the current device location, using any of the

available location options (GPS, Network, etc.). The result is a string in the following format:

OK|Latitude|Longitude, where OK is a fixed part for testing if a result was returned, and

Latitude and Longitude are the coordinates of the current location. If a location could not be

obtained, for any reason, an error message will be returned.

There are other methods of displaying the location in the device by using the Invoke OS Cmd

operation with Execute On=Client. You would therefore not need the subtask:

 You can directly enter: https://maps.google.com/?q='&Trim (GPS
Location). If the Google Maps application is installed on the device,
you will be asked to decide in which application to display the
location.

 You can use 'geo:'&Trim (GPS Location). This will display each application that can
display a geographical address.

 You can load a specific application directly by using its name, such as:
'waze://?q=London' to open the Waze GPS application and navigate to London.

http://developer.android.com/reference/java/lang/System.html#getProperty(java.lang.String)

Interacting with the Device 36

Location queries can sometimes take time to respond, because the
GPS device is searching for satellites. During this time, the client
is blocked, waiting for a response. You should make proper
indications for the user that this is the situation. As an example,
before invoking the GPS service, you can display a form such as
“Searching for GPS location…”

Location queries have a built-in timeout of 20 seconds.

This operation opens the connection to the GPS and closes it
once the data is received. If you need to frequently get the GPS
data, you should consider keeping the GPS connection open by
writing native code to do so.

Camera Support
It is possible to initiate a camera from the device using the ClientFileOpenDlg function.

 When this function is used with the following word: camera as the second parameter, the
camera will be opened.

This will enable the user to take a picture and select it. The full path name of the picture will be

returned from the function. It is then possible to upload this picture to the server using the

ClientFileToServer function.

Note that the camera value cannot be used to capture videos.

You need to provide all parameters for the ClientFileOpenDlg
function. Here is an example for use on Android devices:

ClientFileOpenDlg('','camera','','FALSE'LOG,'FALSE'LOG)

Gallery Support
You can also get an image file from an image gallery using the ClientFileOpenDlg function.

 When this function is used with the following word: images as the second parameter, the
images gallery will be opened.

The full path name of the image will be returned from the function. It is then possible to upload

this image to the server using the ClientFileToServer function.

Interacting with the Device 37

Accessing the Mobile Devices’ Capabilities
It is possible to use the device capabilities such as calling a phone number, sending an SMS,

and opening a browser, by using the Invoke OS command with the URL of the required

command. For example:

 tel:1-408-555-5555
 sms:1-408-555-1212
 mailto:support@magicsoftware.com
 mailto:to=support@magicsoftware.com&subject=this is a test&body= test mail
 http://magicsoftware.com

Note:

 Do not forget to set the Execute On property to Client.
 When sending mail, there are some characters that are not allowed in the subject and

body. On iOS devices, for example, the ampersand (&) character should be replaced with
%26 and on Android devices the following characters should be removed:
#,%,&, :, and =.

Refer also to:

http://developer.apple.com/library/safari/#featuredarticles/iPhoneURLScheme_Reference/Introduction/Intro

duction.html#//apple_ref/doc/uid/TP40007891-SW1

Interacting with the Device 38

Summary
In this lesson you learned how to interact with the device using Magic xpa functions. The

ClientOSEnvGet function has predefined keywords that enable you to use some of the device’s
options, such as the GPS and camera.

The built-in keywords enable you to fetch details about the device and display different

information. For example, you may decide that a certain program is only available if you are

using an iPhone.

Offline Implementation 39

Offline Implementation
Magic xpa mobile applications work in a client server mode in which the client, the mobile

device, is the interface that the user sees and contains part of the code. However, the server is

at a remote location, has the database and handles any heavy workload. There is constant

communication between the client and the server depending on the type of work involved. As

you already know, when you call a new task, this process involves accessing the server to

fetch the task details and then to display the task on the client.

What happens when you do not have internet communication? That is where offline

programming is necessary. Magic xpa enables you to develop Offline tasks. Offline programs

allow users to continue to be productive in areas with intermittent, limited or unavailable

internet connectivity. While working offline, data is stored locally on a local database, and

periodically, when internet connectivity resumes, you can synchronize it back to the server.

This lesson covers various topics including:

 The Offline concept
 How the Offline concept works

Lesson 5

Offline Implementation 40

Concept
When planning an offline implementation, it is important to understand the challenges and

constraints that you need to overcome to enable applications to work completely offline

without a server connection. Unlike a connected application, server connectivity is either

non-existent or intermittent, and applications need to be adjusted to handle this scenario

properly, without compromising usability and data integrity. As a programmer, you need to

take into account the technical aspect of being disconnected, and the data consistency aspect,

as follows:

 You can store a subset of relevant server data or client-only data on the client. You need to
understand what data is constant data, such as a list of countries and which is not updated
often, such as suppliers and items that are updated often, such as stock. However, even
when dealing with stock, you may not need all of the data on the client. For example, a
salesperson who deals with orders involving computer hardware only needs the products
dealing with computers, while a salesperson who handles cleaning products only needs
that subset. You can also have a scenario where the salespeople have access to the entire
catalog but only current stock quantities is kept on the server and needs to be
synchronized.

 On systems that require user authentication, consider storing user credentials securely on
the client.

 Allow data entry on the client and update client data with server data for data consistency.
 Working under intermittent network connectivity (network disconnects, slow connections)

while allowing uninterrupted operation and data consistency.
 Keeping application resources such as application metadata, image resources and so on,

locally on the client, while allowing updates during connectivity periods.

The above challenges define an offline pattern that is different from patterns used when

network connectivity is guaranteed, and require the developer to handle additional usage

scenarios. Magic xpa provides tools and features that allow developers to tackle these

challenges and provide a complete offline experience.

Some programs are totally client programs and some are server-based and others are both.

An example of a client program can be something like a university student’s lesson timetable.
This timetable is only updated every semester and, therefore, the data can be kept on the

client. An auction-based client depends entirely on server data and, therefore, you need an

internet connection for this. A customer order can have elements of both server and client

data.

Offline Implementation 41

How Does It Work?
Unlike connected applications, offline applications are designed to work without (or with

intermittent) network connectivity. This limitation defines a different execution flow for offline

applications.

To define an Offline program, you simply define a Rich Client program and select the Offline

check box.

Typical offline applications will work as follows:

 On first invocation, offline applications must download and synchronize all necessary
resources required for the offline operation. These include application metadata, images,
client-side data and so on. This requires an offline application to be connected at least
once before it can work offline. If there was no initial connection, the programs will not
work.

 For applications that require user authentication, user credentials should be securely stored
on the client to allow for operation without server authentication. To ensure validity, such
credentials should be re-checked when connected.

 Following initial invocation, all user interactions must be done using local resources only
(local data, local images and so on). By using local resources exclusively, the application
is guaranteed to work, regardless of the internet connectivity state and without requiring
server access. All data updates should be stored locally on the local database.

 Periodically, at an application-dependent timing, the application must synchronize
modified local data back to the server and download server data that was modified since
the last synchronization. Remember that data objects can be updated by multiple clients
and by the server simultaneously and therefore two clients may update the same data at
the same time. You need to take this scenario into account.

 Since Magic xpa automatically synchronizes metadata objects while connected, an
application that runs offline must be allowed to periodically synchronize changes to its
metadata objects. Typically, if an internet connection is available on startup, metadata
objects will be synchronized automatically. The developer should plan for allowing
metadata updates to happen when the application changes.

For more information about how to implement each of the above, and the supporting Magic

xpa features that enable each capability, see the Developing Offline Rich Client

Applications.pdf that can be found in Magic xpa’s Support folder or in the Magic xpa Help.

Offline Implementation 42

Summary
If you decide to give offline capabilities to your application, you need to give thought as to

how to implement the programs and of course which programs are offline and which are not.

You need to think about the following issues and take into account:

 Which programs are fully offline and which need to be online.
 An Offline program cannot call a server program and you need to use the Main Program

to call a server program.
 Your implementation of the synchronization operations and how to have the same data on

the server and the client. Remember that when you have multiple clients you may
encounter a situation where the same record is updated by two different clients.

Customization and Installation 43

Customization and Installation
In previous lessons you used the Android emulator and you used the environment that the

installation process provided. In this lesson you will learn how to provide your own

environment.

This lesson covers various topics including:

 Customizing the client application
 Signing the keystore file
 Creating your own Android package file
 Installing the client on the Android device or emulator

Note: There are similar methods for creating an iPhone file. Check the Magic xpa Help for

assistance.

Lesson 6

Customization and Installation 44

Execution Properties File – Additional Information
In the first lesson, you learned about the execution properties file. In that lesson, you used an

external file and defined its location in a dialog box opened from the generic Magic xpa

client.

When a mobile device client is prepared, it is compiled with a certain execution properties

file. This file tells the client where to find the initial program to load. There are three ways of

defining an execution properties file in the compiled client application:

 An empty file – In this scenario, the end user will initially get the dialog box requesting the
address of the properties file. This is the same behavior you saw in the first lesson when
using the generic Magic xpa client. This is very useful during the development process
because it enables you to separate your development and production environments. You
do not want your end user to be prompted to enter your server details.

 Entering the server, application and programs – The format will be similar to the devprops
file that you learned about. The end user will not be prompted for the path to the devprops
file. This means that all information will be compiled with the client. The disadvantage here
is that if you make changes to the application name or the program name, such as the
change from start to orders, you will need to recompile the client application and upload it
to the mobile device.

 Entering a URL – You enter a URL that is a full URL directing the application to the
devprops file found on your server. The devprops file then directs the client to the
application and program. The advantage here is that if you need to change the
application name or the program name, there is no need to prepare a new client. In the
devprops file, you saw the <property key="server" val="10.1.10.75"/> property. In the
execution properties file, you can use either. To enter a URL you would use the following
property: <property key="url" val="http://example.com/MobileScripts/devprops.txt"/>

You will learn more about compiling a new client in the next section.

Customizing the Application
Throughout this course, you used the icon provided by the installation, which includes the

Magic icon and wallpaper. However, the client may already have an installation of another

application or you may want to provide your icon. Creating a custom application requires

compilation using tools provided by the mobile devices.

You can change items such as:

 Icon
 Startup splash screen
 Execution properties – You learned about this in the previous section.
 Client title
 Application version
 Package name

Here is an explanation on how to do this for an Android-based mobile application. For iOS-

Customization and Installation 45

based devices, please see the Magic xpa Help. You will need the JDK and the Android SDK.

The SDK is a part of the Android emulator. The source code for the Android application is

provided in %EngineDir%\RIAModules\Android\Source. You can modify the mobile

application’s settings by updating the settings.properties file located in the directory mentioned

above. You can change the following properties:

Property Description

sdk.dir

The directory in which the Android SDK is installed. When you
use the \ character, you need to double it: \\

target

The Android version that the compilation is done for. It is
advised to use the most updated version. The minimum version
that you should select it the version that Magic xpa is
compatible with. Note that the version should be installed on
your PC. You can see the installed versions using the Android
SDK manager or by browsing to the android-sdk\platforms
folder.

client.title

The application title as visible to the user.

client.version.code

An integer value that represents the version of the application.

client.version.name A string value that represents the release version of the
application code, as it should be shown to users. Your version
code and name can be different, since only the name is
displayed to the user.

package.name The identifier of the project. The package name must be
unique across all packages installed on the Android system.

output.dir The folder that will contain the built installers.

build.dir A temporary folder location used during the build process. This
folder is removed after a successful build. It can be an absolute
or relative path.

key.store, key.alias,
key.store.password,
key.alias.password

The properties of the keystore. A sample keystore is provided
in the Android folder.

 Icon – To change the icon, replace the icons’ files in the res\drawable-XXX subfolders. You
will need to provide icon files in all of the following sizes: 36x36, 48x48 and 72x72
pixels.

Customization and Installation 46

 Startup screen logo – To change the startup screens, replace the logo.png files located in
the res\drawable-XXX subfolders. You need to provide logo files in different sizes
corresponding to the device’s size.

 Execution properties – Open the execution.properties file and change the execution
values.

 You need to define either the execution properties’ values or a URL referring to a
file containing the execution properties’ values as defined above. Leaving the
URL property empty means that a dialog box will be opened and the end user
will need to write the URL.

Now that you have all the information, you can start preparing the APK file (for Android

devices).

There are a few stages (which are explain later on) to preparing an APK file:

1. Prepare a keystore file. The keystore file is a file that enables you to “sign” your APK
file. To do this, you use your own keys and certificates. A sample file is provided with

this course.

2. Create the signed APK file.

3. Upload the new APK file to the Android device or emulator.

Keystore File

A sample keystore file is provided in the installation. Remember that when you deploy your

application, you need to provide your own keystore.

To create the keystore, you will use the keytool.exe application installed with the Java SDK,

found in your %JAVA_HOME% folder.

4. Run the following command and follow the instructions:

Keytool –genkey –keystory KeystoreName –alias AliasName

KeyStoreName and AliasName will be replaced with your own details. During the process,

you will be asked for the password of the keystore and the alias. You will be asked for

identifying details such as your name, company and address. At the end of this process the

keystore file will be updated with the new information.

APK File

The APK file is based on both the execution.properties file and the settings.properties file.

Make sure that both are defined as you require. Compilation of the Android project is

performed using the Ant tool. The Ant tool is provided with the installation and is located in

the %EngineDir%\RIAModules\Utils\apache-ant-1.8.3 folder. To continue:

5. Navigate to the application source folder:

%EngineDir%\RIAModules\Android\Source.

6. Run the following file: build.cmd.

Customization and Installation 47

The build process creates an APK file named according to the client.title setting of the

setting.properties folder and is located in the output.dir folder.

You can edit the build.cmd file in order to troubleshoot the build

process. For example:

 To see the full actions, remove the -q from the command in the

build.cmd file.

 To save the log to a file, add -l build.log to the command in the

build.cmd file.

7. Copy the APK file to the scripts folder.

Installing the Client on the Android Device or Emulator

There are a few methods to install the APK client on the Android client:

 Run the APK directly on the Android, after receiving it as an email attachment or similar.
 Download the APK via the mobile device’s browser by navigating to the APK file. For

example: http://server_name/magicscripts/myapp.apk.
 Download your application from the Android market.

After successfully installing the APK you will see a new icon under the Applications in the

device.

Refer to the Customizing Your Application and Installing an Application on a Mobile Device

or Simulator topics in the Magic xpa Help for more information on how to customize and

install the application on an Android device.

Customization and Installation 48

Summary
In this lesson you learned how to prepare your own client, which you can use to call your own

Magic xpa application. Remember that the steps to prepare your application are:

1. Prepare the icons and splash images.

2. Define the settings.properties file.

3. Define the execution.properties file.

4. Get a keystore file. Check this link for more details:

http://developer.android.com/tools/publishing/app-signing.html

5. Create the APK file.

6. Install the APK on your device.

http://developer.android.com/tools/publishing/app-signing.html

Preparing the Testing Environment 49

Preparing the Testing Environment
When you develop you need to have a testing environment. This seminar installed the Android

Emulator as a part of the seminar but you will need these tools for your own testing

environment.

This lesson covers various topics including:

 Installing the Android emulator
 Defining the MIME type
 Troubleshooting
 Debugging

Note: There are similar methods for creating the testing environment for iOS devices. You can

find information about this in the Magic xpa Help.

Lesson 8

Preparing the Testing Environment 50

Defining a Simulator
To test your environment, you need to set up a simulator.

Android

To run the Android emulator, you need to download and install the Java SE Development Kit

(JDK) 6 and the Android SDK. The JDK is installed automatically during the Magic xpa

installation if you installed the Web Services component during the Magic xpa installation.

You can download them from:

 JDK: http://www.oracle.com/technetwork/java/javase/downloads/index.html
 SDK: http://developer.android.com/sdk/index.html

An alternative emulator can be downloaded from:

https://cloud.genymotion.com/page/launchpad/download/. This emulator is actually a

virtual machine running virtual Android devices. After downloading and installing the virtual

machine, follow the wizard to download and install Android devices. Note that this emulator

is faster than the native Android emulator.

Android SDK Manager

During the installation of the Android SDK, the Android SDK manager will be launched.

You need to select the following components (for each component you need to select the latest

Android versions or at least the versions that Magic xpa is compatible with):

 Tools\Android SDK Tools – For Magic xpa 3.0, for example, you will need version 24 or
above.

 Tools\Android SDK Platform-tools – For Magic xpa 3.0, for example, you will need
version 21 or above.

 SDK Platform – For Magic xpa 3.0, for example, you will need version 21 (the package is
available under the Android 5.0.1 (API 21) section) or above.

The installation package will then start downloading the package to your system. This process

may take a while depending on your download speed.

The Android SDK Manager is installed on your system enabling you to add or remove

packages in the future.

Android Virtual Device Manager

After installing the SDK platform:

1. Click the Tools menu and start the Manage AVDs (Android Virtual Device) entry in

order to configure the Android emulator and virtual environment.

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://developer.android.com/sdk/index.html
https://cloud.genymotion.com/page/launchpad/download/

Preparing the Testing Environment 51

2. In the Android Virtual Device Manager screen, add a new device and specify:

 Name – The name for the virtual device.
 Target – Choose the Android version, for example: Android 4.0.
 SD Card Size – Define a size for the SD card, for example: 20. The SD Card is

the Android storage card. Since this is an emulator, you simply define the size of
the storage file.

3. Click the Create AVD button. After the device creation is complete, the device will be

added to the list.

4. Select the device and click Start to run the emulator.

Note: Additional information about the emulator can be found at:

http://developer.android.com/guide/developing/devices/emulator.html.

Installation on the Device

As you learned in the previous lesson, there are a few methods to install the client on the

Android device:

 Run the APK directly on the Android device, after receiving it as an attachment as an
example.

 Download the APK via the browser as explained.
 Download the APK from the Android market.

To download from the browser or to run the APK directly from the browser, you need to

configure the Web server to support the download of the APK file. This means defining a

MIME type. According to the Microsoft MSDN, Internet Information Services (IIS) serves only

static files with extensions registered in the Multipurpose Internet Mail Exchange (MIME) types

list. IIS is preconfigured to recognize a default set of global MIME types, and also allows you

to configure additional MIME types and change or remove MIME types. These MIME types

are recognized by all Web sites you create in IIS.

To add a new MIME type, you:

5. Open the Internet Information Services (IIS) manager.

6. Navigate to the Default Web Sites.

7. In IIS 7, open the Mime Types and add a new one as follows:

 Extension=.apk
 MIME type=application/vnd.android.package-archive

For IIS 6, you define a MIME type as follows:

1. Open the Internet Information Services (IIS) manager.

2. Navigate to the Default Web Sites.

3. Right-click and click Properties.

4. Click the HTTP Headers tab.

5. Click the File Types button.

http://developer.android.com/guide/developing/devices/emulator.html

Preparing the Testing Environment 52

6. Click the New Type button and add a new one as follows:

 Extension=.apk
 MIME type=application/vnd.android.package-archive

Using the Keyboard on the Device Simulator

 When you start typing in an Edit control on the device simulator, you will notice
that a virtual keyboard pops up on the emulator. It is important to use this
keyboard. You will notice that, as an example there is no Delete key, since there
is no functionality for the delete hotkey in some devices. The backspace key,
which in many cases behaves like the delete key, is displayed as an X . For
regular typing you can use your own keyboard. If you use your keyboard Tab
key, you may get unexpected results, so it is good practice to use the emulator
keyboard.

 If the keyboard does not pop up, then click
the keyboard icon at the bottom of the screen
and you will get the popup dialog box as
shown on the right. Set the Use physical
keyboard property to OFF.

 On regular mobile devices with a virtual
keyboard, the virtual keyboard is
automatically displayed when parking on
controls that require keyboard input, namely
modifiable Edit controls. On other controls,
the virtual keyboard is automatically hidden.

Troubleshooting
The most common problem regarding the mobile RIA client is that the client fails to connect to

the Web server that is serving the application. There are several scenarios where this problem

can occur:

Mobile device fails to communicate with the Web server

You will not see any requests in the Broker or GigaSpaces Monitor or any connection

indication in the Web server log.

 If the communication is performed using WiFi, verify that the device is connected to the
correct WiFi router.

 Try connecting from the device browser to the Web server to see if there is a connection.
For example: http://192.168.137.1/MagicScripts

If you do not get a response, then the Web server may not be configured correctly.

Preparing the Testing Environment 53

Your firewall may be blocking the communication. Try to enable inbound http/https

communication in the firewall rules. If the problem remains, try to disable the firewall

completely. If you can connect from a browser to the Web server or if your application is now

working, then you can enable it again and make sure that the firewall enables inbound

connections on port 80/443. To enable port 80:

1. In the Control Panel go to:

Windows Firewall > Advanced settings > Inbound Rules.

2. Open World Wide Web Services (HTTP Traffic-In) and select Enabled.

Execution properties file defined in the URL dialog is wrong

You will not see any requests in the Broker Monitor, but you will see the access to the server in

the Web server log.

 Check that the execution.properties file was saved in ANSI format.
 Check that all the attributes in the execution.properties file are spelled correctly and have

the correct values. Remember that the values are case sensitive.
 If the settings.properties file contains a URL attribute with reference to an external

execution file, check that:

 * The external file can be accessed from the mobile device. You can check it by entering
the same URL value on a browser on the device.

 * The external file is in ANSI format and all the attributes in this file have the correct
value (case sensitive).

 Verify that the Magic xpa RIA server is up and is running the project defined in the settings
properties.

To check your file on the Windows desktop, you can rename the file to execution.properties

(remember that you gave it a txt file extension), place it in the

%EngineDir%\RIAModules\Desktop folder and run the MgxpaRIA.exe application in that

folder. If everything is properly defined, the RIA application should start on the Windows

client.

Debugging
As in the desktop RIA, you can activate debug logs on your mobile client by defining a proper

value for the InternalLogLevel property in the [MAGIC_RIA] section of the Magic.ini file.

Android

The application log is written in the internal device log.

You can see the log by using the Android Debug Bridge (ADB) utility, which is located in the

platform-tools folder in your SDK folder, usually at: C:\Program Files\Android\android-

Preparing the Testing Environment 54

sdk\platform-tools.

To use the ADB utility on a mobile device, make sure that the mobile device is defined to:

 Run in debug mode. To enable it, go to Settings/Applications/Development and check the
USB Debugging check box.

 Allow installation of a non-market application. To enable it, go to
Settings/Applications/Application Settings and check the Unknown sources check box.

To view the device log, run the following command: adb logcat.

To view only the RIA client related entries in the device log, run the following command:

adb logcat MAGIC_DEBUG:D *:S. Note that this filtering will not show crashes or illegal

actions.

To clear the log, run the following command: adb logcat -c.

To save the log to a file, run the following command: adb logcat > file.log.

If you need to provide a log of a specific scenario or crash, you need to clear the log first, run

the action that caused the crash and then save the full log to a file.

iOS

The application log can be downloaded to a PC using iTunes.

Simply connect your device to iTunes. In the device apps, select your application and then you

can retrieve the log file.

Preparing the Testing Environment 55

Summary
You now have the tools to create your own testing environment. You can set up a testing

environment before you try it out on your own tablet or mobile device. Bear in mind that you

are working with an emulator and an emulator is slower than your device and is limited;

therefore, there are some items that you may not be able to test satisfactorily, such as a

camera or the GPS. You will however be able to test the general look and feel of the native

application.

Preparing the Testing Environment 56

	Going Mobile with Magic xpa 3.x
	Introduction
	About Magic xpa
	About the Seminar
	Seminar Prerequisites
	Magic Software University

	Setting Up the Mobile Clients
	Mobile Design Mode
	My First Magic Program
	Mobile Preview Pane
	Execution Properties File
	Running the Program on a Mobile Device
	How Does It Work?
	Executing a Program Directly from the Studio (Android only)

	Understanding the Client
	About Mobile Devices
	Magic xpa on a Mobile Device
	Developing in RIA
	Form Considerations
	Window Types
	Form Size

	Placement
	Supported Controls
	Edit Controls
	Image Controls
	Two-State Images
	Button Controls
	Tab Controls

	Application Navigation
	Navigation
	Termination

	Design Considerations
	Status Bar
	Colors and Fonts
	Colors
	Fonts
	Adding a font manually

	Summary

	Advanced Controls
	Tables
	Landscape Mode

	Mobile Events
	Selection Lists
	Selection Program
	Selection Controls

	Menus
	Summary

	Interacting with the Device
	Mobile File System
	Querying Device Characteristics
	Finding the Device Location (GPS)
	Camera Support
	Gallery Support
	Accessing the Mobile Devices’ Capabilities
	Summary

	Offline Implementation
	Concept
	How Does It Work?
	Summary

	Customization and Installation
	Execution Properties File – Additional Information
	Customizing the Application
	Keystore File
	APK File
	Installing the Client on the Android Device or Emulator

	Summary

	Preparing the Testing Environment
	Defining a Simulator
	Android
	Android SDK Manager
	Android Virtual Device Manager
	Installation on the Device
	Using the Keyboard on the Device Simulator

	Troubleshooting
	Mobile device fails to communicate with the Web server
	Execution properties file defined in the URL dialog is wrong

	Debugging
	Android
	iOS

	Summary

