
 

 

 

Magic pi 4.5 with Sugar Connector 
Seminar 

  

Book ID: UTLSUGMI4     
 

Edition: 1.0, July 2016 
 
Course ID: UCLSUGMI45 
 
Magic University Official Courseware  

Self-Paced Tutorial 

Magic xpi 4.5 with Sugar Connector Seminar 
 



 

 

2 

The information in this manual/document is subject to change without prior notice and does not represent a commitment on the part of 

Magic Software Enterprises Ltd. 

Magic Software Enterprises Ltd. makes no representations or warranties with respect to the contents hereof and specifically disclaims any 

implied warranties of merchantability or fitness for any particular purpose. 

The software described in this document is furnished under a license agreement. The software may be used or copied only in accordance 

with the terms and conditions of the license agreement. It is against the law to copy the software on any medium except as specifically 

allowed in the license agreement. 

No part of this manual and/or databases may be reproduced or transmitted in any form or by any means, electronic or mechanical, 

including photocopying, recording or information recording and retrieval systems, for any purpose other than the purchaser’s personal 

use, without the prior express written permission of Magic Software Enterprises Ltd. 

All references made to third-party trademarks are for informational purposes only regarding compatibility with the products of Magic 

Software Enterprises Ltd. 

Unless otherwise noted, all names of companies, products, street addresses, and persons contained herein are part of a completely 

fictitious scenario or scenarios and are designed solely to document the use of Magic xpi. 

Magic™ is a trademark of Magic Software Enterprises Ltd. 

Btrieve® and Pervasive.SQL® are registered trademarks of Pervasive Software Inc. 

IBM®, Topview™, System i5/System i™, pSeries®, xSeries®, RISC System/6000®, DB2®, WebSphere®, Domino®, and Lotus Notes® are 
trademarks or registered trademarks of IBM Corporation. 

Microsoft®, FrontPage®, Windows™, WindowsNT™, ActiveX™, Exchange 2007™, Dynamics® CRM, SharePoint®, Excel®, and Word® are 
trademarks or registered trademarks of Microsoft Corporation. 

Oracle®, JD Edwards EnterpriseOne®, JD Edwards World®, and OC4J® are registered trademarks of the Oracle Corporation and/or its 

affiliates. 

Google Calendar™ and Google Docs™ are trademarks of Google Inc. 
Salesforce® is a registered trademark of salesforce.com Inc. 

SAP® Business One and SAP® R/3® are registered trademarks of SAP AG in Germany and in several other countries. 

SugarCRM is a trademark of SugarCRM in the United States, the European Union and other countries. 

Linux® is a registered trademark of Linus Torvalds. 

UNIX® is a registered trademark of UNIX System Laboratories. 

GLOBEtrotter® and FLEXlm® are registered trademarks of Macrovision Corporation. 

Solaris™ and Sun ONE™ are trademarks of Sun Microsystems Inc. 
HP-UX® is a registered trademark of the Hewlett-Packard Company. 

Red Hat® is a registered trademark of Red Hat Inc. 

WebLogic® is a registered trademark of BEA Systems. 

Interstage® is a registered trademark of the Fujitsu Software Corporation. 

JBoss™ is a trademark of JBoss Inc. 
GigaSpaces, GigaSpaces eXtreme Application Platform (XAP), GigaSpaces eXtreme Application Platform Enterprise Data Grid (XAP EDG), 

GigaSpaces Enterprise Application Grid, GigaSpaces Platform, and GigaSpaces, are trademarks or registered trademarks of GigaSpaces 

Technologies. 

Clip art images copyright by Presentation Task Force®, a registered trademark of New Vision Technologies Inc. 

This product uses the FreeImage open source image library. See http://freeimage.sourceforge.net for details 

This product uses icons created by Axialis IconWorkShop™ (http://www.axialis.com/free/icons) 

This product includes software developed by the Apache Software Foundation (http://www.apache.org/). 

This product includes software developed by Computing Services at Carnegie Mellon University (http://www.cmu.edu/computing/). 

Copyright © 1989, 1991, 1992, 2001 Carnegie Mellon University. All rights reserved. 

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://www.openssl.org/). 

This product includes software that is Copyright © 1998, 1999, 2000 of the Thai Open Source Software Center Ltd. and Clark Cooper. 

This product includes software that is Copyright © 2001-2002 of Networks Associates Technology Inc All rights reserved. 

This product includes software that is Copyright © 2001-2002 of Cambridge Broadband Ltd. All rights reserved. 

This product includes software that is Copyright © 1999-2001 of The OpenLDAP Foundation, Redwood City, California, USA. All Rights 

Reserved. 

All other product names are trademarks or registered trademarks of their respective holders. 

Magic xpi 4.5 with Sugar Connector Seminar 

July 2016 

Copyright © 2013-2016 by Magic Software Enterprises Ltd. All rights reserved. 

  



 

 

3 

Table of Contents 

Introduction ............................................................................................................................. 5 

About the Seminar ................................................................................................................ 5 

How to Use This Guide .......................................................................................................... 6 

Sugar Connector ...................................................................................................................... 7 

Magic xpi Architecture with the Sugar Connector ...................................................................... 8 

Connecting to SugarCRM ...................................................................................................... 8 

Installation ........................................................................................................................... 8 

Creating a Project ................................................................................................................. 9 

Summary ........................................................................................................................... 12 

Querying SugarCRM via Magic xpi .......................................................................................... 13 

Preview of the Flow ............................................................................................................. 14 

Triggering the Flow ............................................................................................................. 15 

Query Operation ................................................................................................................ 18 

WHERE Clauses ................................................................................................................. 26 

Exercise ............................................................................................................................. 28 

Summary ........................................................................................................................... 28 

Adding an Object .................................................................................................................. 29 

Adding an Object to SugarCRM ........................................................................................... 30 

Exercise ............................................................................................................................. 37 

Summary ........................................................................................................................... 38 

SugarCRM Object ID .............................................................................................................. 39 

Creating Objects by ID ........................................................................................................ 40 

Summary ........................................................................................................................... 44 

Creating a SugarCRM Quote Scenario ...................................................................................... 45 



 

 

4 

Using the XML Interface to Create a Quote ............................................................................. 46 

Running the Flow ................................................................................................................ 52 

Summary ........................................................................................................................... 53 

Capturing Events .................................................................................................................... 55 

Sugar Connector Service ..................................................................................................... 56 

Sugar Trigger ..................................................................................................................... 56 

DateTime Fields .................................................................................................................. 61 

Exercise ............................................................................................................................. 62 

Summary ........................................................................................................................... 62 

Solutions ............................................................................................................................... 63 

Lesson 2 – Querying SugarCRM via Magic xpi ....................................................................... 63 

Lesson 3 – Adding an Object ............................................................................................... 69 

 

  



 

 

5 

 

 

Introduction 

 

 

Welcome to Magic Software University’s Magic xpi 4.5 with Sugar Connector Seminar. 

We, at Magic Software University, hope that you will find this tutorial informative and that it 

will assist you in getting started with this exciting product. 

About the Seminar 

The seminar is intended for people with a knowledge of SugarCRM who want to know how to 

successfully use Magic Software Enterprises’ Magic xpi product, and how to integrate  

Magic xpi with SugarCRM. 

During the seminar you will learn about the Magic xpi Sugar connector and how  

Magic xpi integrates with SugarCRM.  

Topics that will be covered include: 

 Queries, including advanced queries 

 Referencing objects by IDs  

 Creating a SugarCRM Quote scenario 

 Relationships between objects using the Link method  

 Capturing events 

 

 
 
 

  



 

 

6 

Course Prerequisites 

Before you start with the course there is basic knowledge that you need to have: 

Development knowledge Familiar with Magic xpi 4.5, Magic xpi 4.1 or  
iBOLT/Magic xpi 3.x 

SugarCRM Knowledge of SugarCRM  

Your computer must also meet some basic requirements: 

Hardware  Windows XP Pro and later. The course was tested on 
Windows 7 

 Pentium processor 1.8GHz and upwards 
 4Gb RAM or greater 
 At least 1Gb of free space 
 Screen resolution of at least 1024x768 pixels 

Magic xpi You will need to install Magic xpi V4.5 

License For deployment purposes, you need the SUGCRM license 
from your Magic Software Enterprises representative. This 
is not required for development purposes.  

SugarCRM This seminar has been designed using the SugarCRM 

installation with the Populate Database with Demo Data option 

set to Yes. The demonstration data is based on Version 7.5.0.1 

of SugarCRM (which uses their v10 API). If you use a different 

version you will need to provide your own sample data files. 

Email Server You need access to an email server so that you can send 
emails. You can use your Gmail or Yahoo accounts as 
well. Check the internet for instructions on how to 
configure those mail servers for POP3, IMAP and SMTP. 

 

 

How to Use This Guide 

The self-paced guide provides detailed step-by-step instructions. If you are learning using this 

self-pace tutorial, feel free to contact your Magic Software Enterprises representative or the 

Support department for further assistance. 

 



 

 

7 

 

 

 

Sugar Connector 

The Magic xpi Sugar connector enables a work flow between Magic xpi and SugarCRM.  

Using the Sugar connector, you can add, modify, and delete objects in SugarCRM. 

You can also trigger a Magic xpi flow when actions such as add, update, or delete are 

performed in SugarCRM. 

As was mentioned in the Prerequisites section, for deployment purposes, to work with the 

Sugar connector, you need a special Magic xpi license: SUGCRM. 

This lesson covers various topics including: 

 An introduction to the Sugar connector 
 Installing the newest version of the Sugar connector 
 Creating a SugarCRM resource 
 Connecting Magic xpi to SugarCRM 

  

Lesson 1 



 

 

8 

Magic xpi Architecture with the Sugar Connector 

The Magic xpi Sugar connector works with SugarCRM’s REST API. The XML interface enables 

flexibility when working with SugarCRM, since you do not need to frequently update the 

Sugar connector. 

The Sugar connector can create, query, update, and delete data objects in SugarCRM using 

the REST API.  

The Magic xpi Sugar connector supports both the XML interface and Method interface.  

The Sugar connector has the following methods: 

 Create Product Bundles 
 Document Add Revision 
 Get Server Info 
 Get User ID 
 Link 
 Note Add Attachment 

Connecting to SugarCRM 

The Sugar connector needs to be connected to a specific user in SugarCRM. 

Therefore, before working with the Magic xpi Sugar connector, you need: 

 A valid SugarCRM user name 
 A valid SugarCRM password 

Installation 

Magic xpi 4.5 supports SugarCRM version 6.4x, which works with the v4_1 REST and 

SugarCRM version 7.x, which works with the v10 API.   

 

This course uses SugarCRM Enterprise, Version 7.5.0.1.  
The Sugar Community Edition works with 6.4x, which will not be 
demonstrated in this course. However, most of the functionality is similar. 

As mentioned in the prerequisites, you should already have Magic xpi 4.5 installed on your 

computer.  

You’re now ready to start developing. 



 

 

9 

Creating a Project 

As with any development project, the first step is to create a new Magic xpi project. 

To create a new Magic xpi project:  

1. Open Magic xpi. 

2. Click on the File menu, and select New. The New Project dialog box will open.  

3. Create a new project called SugarCRM_seminar.  

 

For the purpose of this course, data has been prepared for you.  

4. Copy the course_data folder into the SugarCRM_seminar\SugarCRM_seminar folder. 

This folder and subfolder were created when you created the new project.  

 

A final version of the project is provided in the Final_SugarCRM_Project 

folder, which you can copy to the projects folder and refer to if needed. 

 

  



 

 

10 

Defining a Resource 

Before using the Sugar connector in a step, you need to define the Sugar resource.  

1. From the Project menu, select Settings. 

2. While parked on the Resources option, click Add to add a resource. 

3. From the Resource Type field, select Sugar. 

4. Name the resource: Sugar seminar.   

  

There are three mandatory settings to be defined in the Sugar resource. These are the settings 

that appear in bold. 

 

5. From the API version setting, select V10+ API. If you are using the free version, you’ll 
use the Legacy API option. 

6. In the REST endpoint setting, enter the URL for the V10 API, which is: http://{site 

url}/rest/v10/. In the image above, you can see that the site url that was used was: 

sugarcrmsrv/sugar. Therefore, the full URL entered was: 

http://sugarcrmsrv/sugar7/rest/v10/.     

 

http://sugarcrmsrv/sugar7/rest/v10/


 

 

11 

 

For SugarCRM v4.1, including the Sugar Community Edition, the 

syntax is: http://{site url}/service/v4_1/rest.php. 

 

7. Enter your User Name and Password for the SugarCRM server. 

You can leave the Caching level as is.  

The basic assumption behind the need for caching is that the same data will be needed more 

than once. Therefore, if data can be re-fetched without performing disk I/O operations, overall 

performance will be enhanced. This optional setting has two options:  

 Context: Login and module metadata is cached throughout the context. The login context is 
created by the first SugarCRM step in the flow and used by all other SugarCRM steps in 
the context configured with the same resource. 

 Engine (default): Login and module metadata is cached for all contexts running under a 
Magic xpi engine. Login occurs only once for all contexts, until the login is no longer valid. 
This option enhances performance and lowers the use of SugarCRM API calls. 

 

8. Click the Validate button to check your connection. If all of the settings were entered 

correctly, you should see the following message: 

 

 

  

You have now successfully created a connection from Magic xpi to SugarCRM.  

  



 

 

12 

Summary 

In this lesson: 

 You were introduced to the Magic xpi Sugar connector.  
 You installed the newest version of the Sugar connector. 
 You created a project for the seminar. 
 You created a SugarCRM resource and connected Magic xpi to SugarCRM. 

 

 

  



 

 

13 

 

Querying SugarCRM via Magic xpi 

A Sugar Query operation is used to retrieve data from an object according to specific search 

criteria.  

You can also define advanced WHERE clauses using the Data Mapper. 

This lesson covers various topics including: 

 Query operation 
 WHERE clauses 
 Filters 

  

Lesson 2 



 

 

14 

Preview of the Flow 

The business process logic of the Magic xpi flow that you will create is as follows: 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Request is received 

Does account exist in 

Sugar? 

Add new Sugar 

account  

If No 

If Yes 

Was account created? 

Add contact 

If Yes 
If No 

If No 
If Yes 

Are requested 

items valid?  

Add a Sugar 

opportunity  

If Yes If No 



 

 

15 

Triggering the Flow 

You’ll use a trigger to activate the flow. 

1. Rename the default flow and name it Scan for New Requests. 

2. From the Solution Explorer, double-click on the Context Variables folder.  

 

 
 

3. From the Context Variables tab, click Add and add the following variable: 

 C.RequestXML, a BLOB variable 

4. Click the  Save button. 

5. From the Solution Explorer, double-click on the Flow Variables folder (under the new 

Scan for New Requests flow).  

  



 

 

16 

6. From the Flow Variables tab, click Add and add the flow variables listed below. When 

you are asked to use these variables, an explanation about them will be provided.   

 F.Account, a BLOB variable 
 F.RequestFileName, an Alpha variable of size 255 
 F.ContactXML, a BLOB variable 
 F.AccountExists, a Logical variable with a default value of 'FALSE'LOG. The 

F.AccountExists variable will be used if a query returned a user record from 
SugarCRM. 

 F.AccountId, an Alpha variable of size 100 

7. Click the  Save button. 

 

 

 

IDs in SugarCRM are long. For example:  

c570b261-42da-3240-fe8e-557e48e862df  

Therefore, the ID variables used in this course are set to 100.  

You will receive the request using the Directory Scanner component. There are two ways of 

using the Directory Scanner component: Trigger or Step. In this example you will use the 

Trigger mode. 

1. From the Toolbox (in the Triggers section), drag a Directory Scanner component to the 

Trigger area. 

2. In the trigger’s Properties pane, set the Trigger Name property to: Wait for File.  

3. Right-click on the component and select Configuration. The Component Configuration: 

Directory Scanner dialog box opens. 

4. Click New to define the trigger.  

5. Define the following: 

a. Leave the Source as LAN. 

b. Set the Directory to: EnvVal ('currentprojectdir')&'course_data\in\'. The 

currentprojectdir environment variable contains the path to the directory where the 

current project resides.  

c. In the Filter property, leave the default of *.*  

d. Leave the Action as Move. 

e. Set the destination Directory to EnvVal ('currentprojectdir')&'course_data\out\'. 

6. Click the Advanced button. 

a. Set the Return file to property to C.RequestXML. This is the variable that the 

Directory Scanner will return the content of the file to. 

b. Set the Return destination file name to property to F.RequestFileName. This is the 

name of the variable that the Directory Scanner will return the name of the file to. 



 

 

17 

 

7. Click OK.  

8. From the Project menu, select Settings.  

9. Go to the Project Environment section and click the Internal Environment Variables 

option.  

10. Check that the currentprojectdir environment variable is pointing to the correct 

location. We used this environment variable in the Directory Scanner component, so 

we need to check this environment variable so that the trigger will know where to take 

the files from.  

 

You have finished defining the trigger. 



 

 

18 

Query Operation 

You will use the XML interface to check whether the customer exists in SugarCRM. 

You will use the Sugar connector to check whether the customer exists as an account in 

SugarCRM. 

 

An account in SugarCRM represents a single company. 

1. Drag a Sugar connector  as the first step in the Scan for New Requests flow. 

2. Set the Step Name property to Check for Account. 

3. Leave the Interface as XML. 

4. In the Setting section of the Properties pane, check that the Resource Name property is 

set to the Sugar seminar resource. Since this is, currently, the only SugarCRM resource, 

it was probably selected automatically by Magic xpi. 

5. Right-click on the step and select Configuration or just double click on the step.  

The Sugar Configuration dialog box enables you to perform operations on a SugarCRM 

object. 

 

6. From the Module field, click the selection button . 



 

 

19 

Magic xpi needs to fetch the objects exposed by the SugarCRM API before accessing them. 

Magic xpi connects directly to the SugarCRM server, retrieves the available modules, and 

displays them in a list. The Modules List contains all of the modules from the SugarCRM server.  

7. To retrieve the latest Module List from the SugarCRM server, click the Reload button. 

The following message will appear.  

 

 
 

8. Click OK. The following image will appear, showing that Magic xpi is retrieving data 

from the SugarCRM server. 

 

 

 



 

 

20 

9. From the Modules List, select Accounts.  

 

 

The Sugar connector supports CRUD operations: Create, Query, Update and Delete. Now 

since you’re simply just browsing to see if an account exists in SugarCRM, you’ll perform a 

Query. 

10. From the Operation field, select Query. 

11. The Results Per Chunk field is the maximum number of results that you want to fetch in 
each call to SugarCRM. Leave it set to 2000. 

12. The Return Fields option enables you to define which fields will be returned in the result 
XML.  

13. Clear the Return Fields check box and select id and name. In general, this is 
recommended, because it reduces your result set, the size of the fields that are 
returned.  

14. The Store result in field will hold the XML retrieved from SugarCRM. You can select 

either a file or a variable. Select Variable, and then select the F.Account variable that 

you defined earlier. 

15. It’s a good idea to click the Refresh XSD button to make sure that you’re using the latest 

module metadata. Changes that are made in the SugarCRM environment – 

customizations and so forth – are all pulled into the integration environment so that 

when you do the data mapping, it’s all there and available to you. 

16. Click OK.  

 



 

 

21 

 

The Magic xpi Sugar connector saves the XML Schema, the XSD, in the 

following directory:  

[project dir]\[project name]\[project name]\SugarCRM\XSD\[resource 

name] 

In our case, this is: 

projects\SugarCRM_seminar\SugarCRM_seminar\SugarCRM\XSD\Sugar 

seminar\Accounts.xsd 

 

As you are currently using the Sugar connector with the XML interface, you will use the Data 

Mapper to configure it.  

After defining the properties for the Sugar connector, a new IFC Model entry was created in 

the Destination section: IFC_SugarCRM. 

 

You need to use the request XML that was retrieved by the Directory Scanner to check whether 

the account exists in SugarCRM. Therefore, you need to have XML as the source. 

  



 

 

22 

1. From the Toolbox, drag an XML entry to the Source pane of the Data Mapper. 

 

 
 

2. Go to the Properties pane. 

a. Set the Name property to RequestXML. 

b. In the XSD File property, select the following schema:  

course_data\schemas\request.xsd 

c. Set the Source Type to Variable and select the C.RequestXML variable. 

 

 

3. Click the save icon. 

The next stage is to map. 



 

 

23 

You need to send the customer name to SugarCRM to query its existence. Therefore, in the 

destination, you should use the name node in the SugarCRM Accounts module that you 

previously configured.  

 

To expand all of the nodes, park on the top node of the Source or 
Destination side, right-click and select Expand all. 

 

4. In the Data Mapper’s Source pane, expand the Request > CustomerDetail node. 

5. In the Destination pane, expand the Accounts > row > Fields node. 

6. While standing on the Fields node, press the letter n to get to the name node. 

7. Connect the AccountName node to the name node.  

8. Click the save icon and return to the Flow area. 

 

 

Another way to search is to press Ctrl+Shift+F from one of the panes or 
go to the Edit menu, select Find and then Find Text. In the Find Text dialog 
box, you can narrow your search. Once the cursor is on one of the items 
that meets your search criteria, you can press F3 to go to the next item.  

 

Check If Account Exists 

1. Drag a Data Mapper component as a child of the Check for Account step. 

2. Set the Step Name property to the following: Check If Account Exists. 

3. Right-click on the step and select Configuration or double-click on the step. 

4. Drag an XML entry onto the Source pane of the Data Mapper. 

5. In the XSD File property, select the following schema:  

SugarCRM\XSD\Sugar seminar\Accounts.xsd 

6. Set the Source Type to Variable and select the F.Account variable. 

7. Drag a Variable entry onto the Destination pane. 

8. In the Properties pane, go to the Variables property and click the selection button . 

9. Select both the F.AcountExists and F.AccountId variables. 

 

 
 



 

 

24 

10. On the Data Mapper’s Source pane, open the following node: Accounts > row > 

Fields. 

11. On the Destination pane, open the Instance node. 

12. Connect the id node to the F.AccountExists node. 

13. While the cursor is on the F.AccountExists node go to the Calculated value property 

and enter the following expression:  

 
NOT (Src.S1/Accounts/row/Fields/id =''OR ISNULL (Src.S1/Accounts/row/Fields/id )) 

In the expression above, the path Src.S1/Accounts/row/Fields/id  is entered by clicking the 

Source Nodes   icon at the top of the Expression Editor. 

This expression returns True if there is a value. This means that if the id field is not empty or 

null, then the account exists. 

14. Also connect id to F.AccountId. This will update the F.AccountId variable with the value 

of the SugarCRM id fields. This connection will be used in a later step when an 

opportunity is created. 

15. Save and return to the Flow area. 

Testing Your Project  

You will want to test your flow to make sure it works.  

1. Right-click on the Check for Account step and select Breakpoint. A red dot will appear 

next to the step. A breakpoint means that processing will halt at that point. 

2. Copy the Non existing account.xml file from the out folder to the in folder. This XML file 

includes a non-existing account named Magic Hotels. 



 

 

25 

3. From the toolbar, click the Start Debugging  icon (or from the Debug xpi menu, 

select Start Debugging). You can also press F5 to start the Debugger. Magic xpi 

checks the project for any syntax errors. If there are syntax errors, you will not be able 

to continue. There are various types of syntax errors, such as a mandatory property 

that was not defined or was incorrectly defined.  

When the breakpoint is reached (which can sometimes take a few seconds), the Toolbox will 

become the Context Tree.  

4. From the Context Tree, right-click the Check for Account option and select Step. This 

will run the second step.  

You now want to look at the F.Account variable, which is the variable that you selected in the 

Store result in field.  

5. From the Context Tree, right-click on the Check If Account Exists option and select 

Context View (or select it from the Debug xpi menu).  

6. Find the F.Account variable and notice that it says Empty BLOB type Variable. This is 

because the account does not exist.  

 

 

 

7. Click Close and then OK. 

8. Go to the Debug xpi menu and select Stop Debugging to go back to development 

mode.  



 

 

26 

WHERE Clauses 

 

In the v10 API, you can also use a more advanced query. 

If you open the Check for Account step’s Data Mapper, you’ll see the Request_Arguments 

compound and its FILTER and ORDER_BY elements. These are what you use for the advanced 

queries. Unlike the Legacy API, the query is not a direct SQL statement that goes as-is to the 

database. 

FILTER 

For example, to query for data where the last_name='Smith' and the first_name='John', you 

would use this FILTER clause: 

filter[0][first_name][$starts]=John&filter[0][last_name]=Smith 

The [first_name] element is a field name but [$starts] is a reserved keyword, which is part of 

SugarCRM filter syntax. 

  

In the legacy version, the WHERE clause is sent directly to the database. In 

the Accounts > SQL > WHERE node, you use the following syntax: 

<DB_TableName>.<FieldName> 

For example, if you want to query the data with last_name='Smith' and 

first_name='John', you would use the following syntax:  

Contacts.last_name=&apos;Smith&apos;AND 

Contacts.first_name=&apos;John&apos; 

 

 



 

 

27 

Magic xpi passes the filters as is to SugarCRM, so you can use any of their supported filter 

operations, which are as follows. 

Filter Description 

$equals Performs an exact match on that field. 

$not_equals Matches on non-matching values. 

$starts Matches on anything that starts with the value. 

$in Finds anything where field matches one of the values as specified as an array. 

$not_in Finds anything where field does not matches any of the values as specified as an 
array. 

$is_null Checks if the field is null. This operation does not need a value specified. 

$not_null Checks if the field is not null. This operation does not need a value specified. 

$lt Matches when the field is less than the value. 

$lte Matches when the field is less than or equal to the value. 

$gt Matches when the field is greater than the value. 

$gte Matches when the field is greater than or equal to the value. 

This table was replicated from: http://developer.sugarcrm.com/2014/02/28/sugarcrm-cookbook1/. 

ORDER_BY 

As mentioned above, you can also query using the ORDER_BY element in the Request 

Arguments node. 

For example, enter 'name:desc' in the Calculated value property of the ORDER_BY element. 

All of the records will be sorted in descending order of their name field for the selected 

module and displayed in the return variable. 

  

http://developer.sugarcrm.com/2014/02/28/sugarcrm-cookbook1/


 

 

28 

Exercise 

During this lesson, you created a flow named Scan for New Requests. The purpose of this flow 

is to scan the in folder to see if a new XML request is there. If Magic xpi found a request in the 

folder, then you were asked to check whether the customer exists in SugarCRM. 

If the customer exists, then: 

 Check whether the items requested in the XML file are valid SugarCRM products. 

Hints:  

 Refer back to the Preview of the Flow section on page 14. 
 Use the ProductTemplates module.  

 

  

Once you have tried this on your own, please make sure to look at the 

solution for this exercise on page 63. The following lessons build on the 

exercise. 

 

 

Summary 

In this lesson: 

 You learned about the Query operation. 
 You also learned about WHERE clauses and filters. 
 You used the Sugar connector to query the Accounts module to check the existence of an 

account. 



 

 

29 

Adding an Object 

In the previous lessons you learned how to fetch information from SugarCRM. 

Querying a database is not the only operation needed in a project. It is often necessary to 

add an object to the database. 

In this lesson, you’ll see how Magic xpi enables you to add an entry to the SugarCRM 

database. 

You’ll also learn about using entries in SugarCRM selection lists. 

 

  

Lesson 3 



 

 

30 

Adding an Object to SugarCRM 

The steps needed to add an object are very similar to the steps required to query an object. 

Now, you’ll add a customer if the customer does not exist. In other words, if the Check If 

Account Exists step returns false, you’ll add the customer to SugarCRM. 

1. Open the Scan for new requests flow. 

2. Add a Sugar connector as a child of the Check If Account Exists step and name it Add 

Account. 

3. Double click on the step. 

4. From the Module property, select the Accounts module. 

5. Set the Operation field to Create. 

6. From the New Object ID property, select F.AccountId. When an object is added, 

SugarCRM returns the object ID of the newly created object into this variable. 

  

SugarCRM returns the ID of the last object created. If your step is adding or 

updating multiple records or objects, make sure to take the IDs from the result 

XML. 

 

7. In the Store Result In field, select the F.Account variable.  

8. Click OK. 

You need to use the request XML that was retrieved by the Directory Scanner. This contains the 

customer information. Therefore, you need to have an XML as the source. 

1. Add an XML source and name it RequestXML. 

2. In the XSD File property, select the following schema:  

course_data\schemas\request.xsd 

3. From the Variable property, select the C.RequestXML variable. 

 

  



 

 

31 

You are now ready to map.  

1. On the Source pane, open the following node: Request > CustomerDetail. 

2. On the Destination pane, open Accounts > row > Fields. 

3. Connect the following nodes: 

Source node Destination node 

AccountName name 

Street billing_address_street 

City billing_address_city 

Country billing_address_country 

 

You only want this step to be executed if the customer does not exist; in other words, the 

Check If Account Exists step’s result was unsuccessful. 

1. Park on the Add Account step. 

2. Right-click and set the following condition: NOT (F.AccountExists). 

3. Copy the Non existing account.xml file from the out folder to the in folder. This file 

includes a non-existing account. 

4. Remove any breakpoints and add a breakpoint to the Add Account step.  

5. Run the Debugger on the project. The result for the Create operation is stored in the 

Store result in variable, which in the Add Account step is the F.Account variable. 

6. When the Debugger reaches the Add Account step, open the Context View. 

7. Zoom from the F.Account variable and you can see the content of the variable. For 

every Create operation, the returned XML contains a success or failure indication. In 



 

 

32 

the image below, you can see that the step was successful. 

 

If there is an error, you will see the error in the returned XML.  

8. In addition, open SugarCRM and if the process worked correctly, you should see the 

new account in SugarCRM. 

 

 



 

 

33 

Now you’ll want, as part of the flow, to check if the account was created successfully. 

1. Drop a Data Mapper component under the Add Account step and name it Check If 

Account Created. 

2. Add an XML source. 

3. From the XSD File property, select the following: Sugar seminar\Accounts.xsd. 

4. From the Variable property, select the F.Account variable. 

5. Add a Variable destination. 

6. From the Variables property, select the F.AccountExists variable. 

7. On the Data Mapper’s Source side, this time you’ll open the Return folder (Accounts > 

row > Return). 

8. Connect the Success node to F.AccountExists. 

Although the account has been added, the contact has not yet been added: 

1. Drop a Sugar connector as a child step of the Check If Account Created step. Name 

the step Add Contact. 

2. In Sugar Configuration dialog box, from the Module property, select the Contacts 

module.  

3. Set the Operation field to Create. 

4. Store the result in the F.ContactXML variable. 

5. Click OK.  

6. Add a new XML source and name it FetchContactFromRequest.  

7. From the XSD File property, select the following: course_data\schemas\request.xsd. 

8. From the Variable property, select the C.RequestXML variable.  

You are now ready to map. 

9. On the Data Mapper’s Source pane, open the following node: Request > 

CustomerDetail. 

10. On the Destination pane, open Contacts > row > Fields. 

11. Connect the Customer_Name node to the first_name node and the last_name node. 

In order to have the first name and last name appear together as the customer name, you’ll 
use expressions. 

12. Place the cursor on the first_name node and in the Calculated Value property, enter the 

following expression: StrToken (RepStr ( Trim ( 

Src.S1/Request/CustomerDetail/Customer_Name),' ', '_') , 1 , '_') 

In the expression above, remember that you enter the path 

Src.S1/Request/CustomerDetail/Customer_Name by clicking the Source Nodes   icon at 

the top of the Expression Editor. The expression first replaces the separating space with an 

underscore and then fetches the first token. This is because a space cannot be a token 



 

 

34 

delimiter. Now you’ll do the same for the last name. 

13. Place the cursor on the last_name node in the Calculated Value property, enter the 

StrToken (RepStr ( Trim ( Src.S1/Request/CustomerDetail/Customer_Name ),' ', '_') , 

2 , '_') 

14. Connect E-mail_Address to email1. Make sure that you select email1 and not just 

email. 

15. In the Destination pane, place the cursor on the account_id node and from the 

Calculated Value property, select F. AccountId, the ID returned by the Add Account 

step. 

When adding a new object to SugarCRM from your Internet 

browser, a dropdown list provides a predefined list of available 

values. 

For example, in the Contacts module, a dropdown list enables 

you to select whether the contact is Mr., Ms., Mrs., Dr., or Prof. 

These values are provided internally by SugarCRM. 

1. In the Destination pane, place the cursor on the salutation 

node.  

2. In the Additional XML Properties section of the Properties pane, go to the Enumeration 

property and you will see the available options as defined by SugarCRM. You can 

also see these read-only options in the bottom left of the Data Mapper screen.  

3. Manually enter 'Mr.' as the value in the Calculated Value property. 

 

 

You have now finished adding the contact.  



 

 

35 

You can add a validation step like you did above when you added an account. However, the 

steps won’t be presented here.  

If the flow succeeds, you want to carry out the same steps that you did when the account 

existed. 

1. Right-click on the Add Contact step, select GoTo and click on the Initialize variable 

step. 

2. Add the following condition to the Initialize variable step: F.AccountExists. 

 

 

  



 

 

36 

Now you’ll check the flow. 

3. Move the Non existing account and contact.xml file from the out directory into the in 

directory. 

4. Run the Debugger and then look in SugarCRM to make sure that a new account and 

contact were added as shown in the image below. 

 

 

 

 

As with the Query operation, the Magic xpi Sugar connector saves the XML 

Schema, the XSD, in the following directory:  

[project dir]\[project name]\[project name]\SugarCRM\XSD\[resource 

name] 

 

  



 

 

37 

Exercise 

Check to see if the items in the request are valid, meaning that they exist and the requested 

prices is acceptable. If the items are valid, add the request as a SugarCRM opportunity.  

The opportunity should meet the following criteria: 

 Close this opportunity in two months’ time. 
 In the Next Step field, enter Send email to customer. 
 For the Stage Name field, enter a value from the selection list.  

 

  

Once you have tried this on your own, please make sure to look at the 

solution for this exercise on page 69.  

 

 

  



 

 

38 

Summary 

In this lesson, you: 

 Learned how to add an object to the SugarCRM database. 
 Added an account and a contact for that account. 
 Added a new opportunity. 

  



 

 

39 

 

 

SugarCRM Object ID 

In the previous lessons, you learned about the Magic xpi Sugar connector, and you were able 

to fetch objects from SugarCRM objects using criteria sent from Magic xpi. You were then 

able to use Magic xpi to perform other flow activities. 

Any SugarCRM object can be queried in the manner that was discussed in the previous 

lesson. 

In SugarCRM, every object has a unique identifier, an object ID. Some objects in SugarCRM 

require a query based on an ID from a parent object. Magic xpi enables you to query objects 

by the object ID.  

This lesson covers various topics including: 

 Creating an object by ID 
 SugarCRM Object ID 

Magic xpi’s getObjectIDbyField internal function 

  

Lesson 4 



 

 

40 

Creating Objects by ID 

When you create or delete a SugarCRM object, which is dependent on a parent object, you 

need to retrieve the parent object’s ID. To simplify this process, you can use the internal 

getObjectIDbyField function in the node’s Calculated Value property.  

The function can only be used within a Sugar connector step, and is not seen in the function 

list. 

Syntax 'getObjectIDbyField (ModuleName, FieldName, FieldValue, ErrorIfEmpty)' 
Parameters ModuleName is the name of the SugarCRM module exactly as it appears in 

the API. 
FieldName is the name of the module field that is used in the operation. 
FieldValue is the value to create. 

 ErrorIfEmpty, when set to true, determines that: 

 If the method does not find an ID, the operation will not be 
performed. 

 If the getObjectIDbyField function returns an empty value, then: 

 The Create operation will not create an object, and an 
error will be returned in the result XML. 

 The Update operation will not update an object, and an 
error will be returned in the result XML. 

Return The ID of the linked object. 
Example 'getObjectIDbyField (Accounts, account_id, Nelson Inc, true)' returns the ID of 

the account whose name is Nelson Inc. 
Note 

 It is important to make sure that the whole expression is enclosed 
by single straight quotation marks (' '). It is a string, and the whole 
string is passed to the Sugar connector for parsing. This is why the 
whole string is encompassed by single apostrophes. 

 Currently, this function is not supported for the Query operation.  
 When you use this function, you can only search for a single value. 

You cannot find the ID based on more than one node, for example 
the Name and the City. If the search discovers more than one 
entry, only the first ID that was found is returned. 

 

  



 

 

41 

Fetching the ID of the SugarCRM Account 

In the section above, the example looked for a SugarCRM account named Nelson Inc. This is 

the name of an account in a demo provided by SugarCRM. If you do not have this account in 

SugarCRM, use one from your SugarCRM database. 

Now you will add a contact that belongs to that account. 

For the purpose of this example, you will add a new flow. 

1. Create a flow called Scan for Contacts.  

2. Add one flow variable: 

 F.Contact, a BLOB variable. This variable will hold the result from the Create 
operation. 

3. Drag a Sugar connector as the first step in the Scan for Contacts flow. 

4. Set the step name to Check for Contact. 

5. In Settings section of the Properties pane, make sure that the Resource Name property 

is set to the Sugar seminar resource. As this is the only SugarCRM resource, it was 

probably selected automatically by Magic xpi. 

6. Open the Sugar Configuration dialog box.  

Checking the contact’s existence 

You will use the Sugar connector to check whether a contact exists in an account in 

SugarCRM. 

 

Make sure that the SugarCRM account that you are using has at least one 

contact. In the SugarCRM demo system, the Nelson Inc account has three 

contacts. 

1. In the Module field, click the selection button  and select the Contacts module from 

the selection list.  

2. In the Operation field, make sure that Create is selected.  

3. In the Store Result In field, select the F.Contact variable that you defined earlier.  

4. Click OK. 

This is very similar to the previous lesson. As with the previous lesson, you are currently using 

the Sugar connector with the XML interface. Therefore, you use the Data Mapper to configure 

it.  

The Contacts module requires the account_id entry of the account that the contact belongs to. 

For this, you need the ID.  



 

 

42 

5. In the Destination pane, park on the account_id node. 

6. From the Calculated Value property, zoom to the Expression Editor. 

7. In the Expression Editor, enter 'getObjectIDbyField (Accounts, name, Nelson Inc, true)'. 

Do not forget the apostrophes. If you do not have the Nelson Inc account, then add the 

account name or any of your own accounts. The Nelson Inc account is provided as an 

example.  

 

 

In this example, the getObjectIDbyField searches for the ID of the Nelson Inc account.  

8. In the first_name node’s Calculated Value property, enter: 'David'.  

9. In the last_name node’s Calculated Value property, enter: 'Martin'. 

10. Set a breakpoint on the step. 

11. Check the functionality by using the Debugger on the flow. You do this by right-clicking 

on the flow in the Solution Explorer and selecting Debug. 

12. When the Debugger stops, in the Context Tree, right-click on the Check for Account 

entry and select Step. 

13. When the Debugger stops again, if everything was configured correctly, you will find 

the contact ID in the Context View for the F.Contact variable. 

 

 

 

  



 

 

43 

 

14. You will also see a new contact in SugarCRM named David Martin that is part of the 

Nelson Inc account. 

 

  



 

 

44 

 

Summary 

In this lesson: 

 You learned that each SugarCRM object has a unique ID that uniquely identifies it.  
 You learned that by using the getObjectIDbyField Sugar connector function, you 

can retrieve the ID of a specific object by querying the value of a field. 

 

 

 



 

 

45 

Creating a SugarCRM Quote Scenario 

There are five steps for creating a SugarCRM quote: 

1. Use the SugarCRM XML interface to create a quote. 

2. Use the Create Product Bundles method to create a SugarCRM group. 

3. Create the products that you want to have in your quote, making sure that you define 

values such as quantity, price, and relevant discounts. 

4. Use the Link method to link the product bundle and the products. 

5. Use the Link method to link the quote and the product bundle. 

 

 

  

Lesson 5 



 

 

46 

Using the XML Interface to Create a Quote 
 

 

The quote scenario is not supported in the Legacy API 
implementation of the connector. 

 

1. Create a flow and name it Sugar Quote. 

2. Place the cursor on the flow in the Solution Explorer and set the Auto Start property to 

Yes. By setting this property to Yes, you’re telling Magic xpi to start this flow when you 
run or debug the project. 

Creating the Variables 

You’ll define now the variables that you’ll need in this flow. As you continue on with the 

seminar, you’ll see what each one is used for. 

3. Create the following context variables: 

 C.QuoteID, Alpha 100 
 C.ProductBundleID, Alpha 100 
 C.Products, Blob 
 C.ProductID, Alpha 100 
 C.LinkBundlewithProduct, Alpha 100 
 C.LinkQuotewithProduct, Alpha 100 

4. Create the following flow variables: 

 F.QuoteXML, Blob 
F.QuoteName, Alpha 30 
 

 

In SugarCRM 7, the products are listed in the Quoted Line Items module 

and the Product Catalog is accessed via the Admin menu. 

 



 

 

47 

 

Defining a Flow Data Service 

1. Add a Flow Data Service to the flow. 

2. Create a new entry with the following values: 

 Action = Update 
 Type = Flow 
 Name = F.quoteName 
 Data Type = Alpha 
 Encoding = Ansi 
 Update Expression = 'Quote_1'   This will serve as the name of the quote. 

 

 

Creating a Quote 

1. Add a Sugar step under the 

Flow Data step. 

2. Set the Name property to: 

Create a Quote. 

3. Leave the Interface as XML. 

4. In the Sugar Configuration 

dialog box, set the Module 

to Quotes. 

5. Set the Operation to 

Create. 

6. From the New Object ID 

field, select C.QuoteID. 

7. From the Store Result In 

field, select the 

F.QuoteXML variable. 

  



 

 

48 

8. In the Data Mapper, right click on the following nodes and set their Calculated value 

properties:   

 name = F.QuoteName 
 date_quote_expected_closed = '06/11/2016'DATE    

This will be entered in the Valid Until column in SugarCRM. This is a quick way of 
creating a date object for specific data. 

 quote_stage = 'Draft' 
This will be entered in the Quote column in SugarCRM. 

Creating a Product Bundle 

1. Drag a Sugar connector under the Create a Quote step and name it Create Product 

Bundle. 

2. Set the Interface property to Method. 

3. Double click on the step. The Direct Access Method: Sugar dialog box opens. 

4. Add a new Create Product Bundles method.  

The Magic xpi Create Product Bundles method lets you bundle products into a group. This 

creates a Group in SugarCRM’s Quote Line Items.  

As you can see in the image below, the Group Name and Group Stage parameters in  

Magic xpi populates the Group Name and Group Stage fields in SugarCRM.  

 

5. In the Group Name parameter, enter the text: 'Priority Customer'. 

6. In the Group Stage parameter, select Draft. 

7. In the Result Product Bundle ID parameter, select the C.ProductBundleID variable. You’ll 



 

 

49 

use this to Link the module to the quote. 

8. In the Error Code parameter, select C.UserCode. 

Link the Quotes with the Product Bundle 

Now go back to the Sugar Quote flow where you’ll link the Quote ID with the Product Bundle. 

You’ll use the Link method, which creates links between quotes, product bundles, and 
products. 

Note: You can link multiple products to one product bundle and this product bundle will be 

linked to the quote object. 

1. Drag another Sugar connector to the end of the flow and name it Link Quote with 

Product. 

2. Create a Link method.  

 

3. In the Module Name parameter, enter 'Quotes'. 

4. In the Module ID parameter, select C.QuoteID. 

5. In the Link Name parameter, enter 'Product_Bundles'. 

6. In the Link Module ID parameter, select C.ProductBundleID. 

7. In the Link Result parameter, select C.LinkQuotewithProduct. 

8. In the Error Code parameter, select C.UserCode. 

Creating Products 

You will now create multiple products. 

1. Drag a Sugar connector to the end of the flow and name it Create Products. 

2. Set the Interface to XML. 

3. Set the Module to Products. 

4. Set the Operation to Create. 

5. From the New Object ID field, select the C.ProductID variable. 

6. From the Store Result In field, select the C.Products variable. 



 

 

50 

7. Click OK. 

Now you’ll use the products.csv file that is in the course_data folder. Two products have been 

defined here and you’ll set up Magic xpi so that it creates these products in SugarCRM. 

 

You can see that the file includes two products with three columns. 

 

The second column is the Product ID. In SugarCRM, you can find the Product 

ID in the URL. For example, you can see a Product ID at the end of the 

following URL:   

 

 

8. On the Source side, add a new Flat File entry. 

9. From the Source Type property, select File. 

10. In the File Path property, enter the following expression: 

EnvVal ('currentprojectdir')&'course_data\Products.csv'  

11. From the Collection property, click the  button.  

12. In the Flat File Properties dialog box, define the following three entries: 

Name Data Type Format Length 
Name Alpha 30 30 
ID Alpha 100 100 
Price Numeric  12.4 17 

13. Click OK. 

14. On the Source side, open the Record node. 

15. On the Destination side, open the Products > row > Fields node. 

16. Map the following nodes: 

 Name to name 
 ID to product_template_id     

The product ID will be generated automatically by SugarCRM once the product is 
created. 

 Price to list_price 

  



 

 

51 

Link the Product Bundle and the Products 

You will now link all of the products to the Product Bundle.  

1. Create a new flow. 

2. Name the flow: Link Product to Product Bundle. 

3. Drag a Sugar connector onto the flow and name it Link Bundle with Products. 

4. Create a new Link method. 

 

5. In the Module Name parameter, enter 'ProductBundles'. 

6. In the Module ID parameter, select the C.ProductBundleID variable. 

7. In the Link Name parameter, enter 'Products'. 

8. In the Link Module ID parameter, select the C.ProductID variable. 

9. In the Link Result parameter, select the C.LinkBundlewithProduct variable. 

10. In the Error Code parameter, select the C.UserCode variable. 

Now you’ll define a Data Mapper that will call the Link Product to Product Bundle flow that 

you just created. 

1. In the Link Quote with Product flow, drag a Data Mapper component below the Create 

Products step. 

2. Create an XML source. 

3. In the XSD File property, select the following:  

SugarCRM\XSD\Sugar seminar\Products.xsd. 

4. In the Variable property, select C.Products variable. 

5. Create a Call Flow destination. 

6. From the Flow Name property, select the Link Product to Product Bundle flow. 

7. Map the Products > row > Return > Id to C.ProductId. 

8. On the Destination side, place your cursor on the Link Product to Product Bundle flow 

and set the Condition property with the following: 

Src.S1/Products/row/Return/Success. 

9. Add a NOP step and name it End. 



 

 

52 

That’s it. You’ve finished creating this flow. 

Running the Flow 
1. Run the Debugger by clicking the Start Debugging icon  . 

2. Log into SugarCRM. 

3. Go to Quotes:   

 

4. Open the quote that was just created. 

 

 
 

5. You should see two items created: Angelica Gadget and Santo Gadget. This is the 

product bundle. 

 

 
 

6. Go to Quoted Line Items:   

7. Click on the first new product and modify it. 

8. You can then see the changes in the Quote (click again on Quotes). 

 

Note that in this scenario, you did not carry out validation steps since this is just an example 

of how to implement the steps of the quote scenario. 

  



 

 

53 

Summary 

In this lesson, you learned about a specific scenario in Magic xpi – how to create a 

SugarCRM Quote. 

You learned that this is a five step process: 

1. Using the SugarCRM XML interface to create a quote. 

2. Using the Create Product Bundles method to create a SugarCRM group. 

3. Creating the products that you want to have in your quote. 

4. Using the Link method to link the product bundle and the products. 

5. Using the Link method to link the quote and the product bundle. 

 

  



 

 

54 

 

  



 

 

55 

 

 

 

Capturing Events 

In an integration project, you need to be able to handle actions that are invoked by the so-

called other side, the entity that you want to integrate with.  

Capturing events in SugarCRM enables the triggering of workflows, based on actions carried 

out in SugarCRM. 

For example, if you need to add the customer details to a local database when an Account is 

created in SugarCRM, the workflow will be initiated by an action carried out in SugarCRM.  

The Magic xpi Sugar connector trigger polls SugarCRM for necessary modifications and 

invokes the flow. 

This lesson covers various topics including: 

 Sugar service 
 Sugar trigger 
 DateTime fields 

 

  

Lesson 6 



 

 

56 

Sugar Connector Service 

Before defining a Sugar connector trigger, you need to define a Sugar service as follows: 

1. From the Project menu, select Settings.  

2. Park on Services and click Add. 

3. From the Service Type field, select Sugar. 

4. Name the service: Capture Account. 

5. From the Sugar Resource field, select the resource that you defined earlier: Sugar 

seminar. 

 

 

Sugar Trigger 

You are going to define a Magic xpi trigger that will invoke a flow whenever a new account 

is added in SugarCRM. The Magic xpi flow will send a welcome email to a salesperson.  

 

Sending an email to the administrator is provided as an example of a 

process.  

Once the flow is invoked you can add any Magic xpi component. For 

example, you might want to add the account as a customer in a local 

database or you might want to create a file of all customers added.  

  



 

 

57 

You are going to use a new flow for the purpose of this lesson: 

1. Create a new flow and name it: New Account Added.  

2. Before continuing, you need to add the following flow variables: 

 F.AccountResult – BLOB   
 F.RowLabel – Alpha 30  
 F.Emailbody – BLOB   

3. Define the following global variable. This will be explained later on: 

 G.TriggerStartDate – Alpha 30 

4. Initialize the G.TriggerStartDate global variable with the start date of the course by 

clicking the expression  button and using the DateTimeFormat function in the 

following format: DateTimeFormat (Date ()-1,'10:45:30'TIME,'+03:00',1). This will be 

explained later on in this lesson. 

Now you will define a trigger for the flow: 

1. Drag a Sugar connector to the Trigger area and name it Scan for Accounts. The Sugar 

service that you created is automatically selected. 

2. Double click on the trigger and in the Sugar Trigger Configuration dialog box, click 

New. 

3. In the Row Label column, you can enter your own text to identify this row, for example 

AccountAdded. The Row Label is useful if you have multiple lines. This property is not 

mandatory. The use of the label will be explained later. 

4. Select the SugarCRM module that you want to poll. In this example, you will select 

Accounts. 

5. Determine if you want an indication of whether the object was updated or deleted. In 

this example, select Created. Note that there is no indication as to whether this is a 

new account or an updated account. 

6. In the Start Date property, select the G.TriggerStartDate variable that you previously 

created. The trigger will retrieve accounts that were added or updated from the date 

that you defined in the variable. 

 

In the Start Date property, if the variable is empty or if you do not use a 

variable, Magic xpi starts polling from the next time you run the project. 

Magic xpi saves an indication of the last time that SugarCRM was polled for 

each resource, object and operation combination. The last timestamp is 

saved in the Trigger.xml file under %currentprojectdir%SugarCRM. 

The required format for this property and SugarCRM is the XML DateTime 

format. This will be discussed in the next section.  

 



 

 

58 

Enter as many rows as needed. This is the same as adding different Sugar triggers. Then, by 

using the Row Label column within the flow, you can identify which trigger was actually 

invoked. 

The Sugar connector trigger is a polling trigger. This means that Magic xpi will check the 

SugarCRM server at predefined intervals. By default, the interval is set to five minutes.  

7. Set the Polling interval option to 00:01 (1 minute); otherwise, SugarCRM will use the 

default and wait five minutes. 

8. In the Store XML Result In option, select the F.AccountResult variable, which returns the 

object details. 

9. In the Store Row Label In options, select the F.RowLabel variable, which holds the 

value of the trigger that was invoked.  

 

 
 

 

Data can be retrieved only for objects to which the logged-in user has 

access. 

 



 

 

59 

10. Click OK. 

The trigger has now been defined. 

You’ll now create a Data Mapper step to extract specific information from the result variable, 

F.AccountResult. In this case, you’ll use a template to display this field in a certain structure. 

1. Drag a Data Mapper component as the first step in the flow. 

2. Create an XML source. 

3. In the XSD File property, select SugarCRM\XSD\Sugar seminar\Accounts.xsd. 

4. In the Variable property, select the F.AccountResult variable. 

5. Create a Template destination. 

6. From the Template File property, select course_data\Templates\AccountAdded.tpl.  

This is an HTML template that you will use to send a personalized email to the 

administrator. 

7. In the Destination Type property, select Variable. 

8. In the Variable property, select the F.Emailbody variable. This will be used as the 

email’s HTML body. 

9. Map the Accounts > row > Fields > name node to the CustomerName node. 

You’ll now send the email to the administrator. 

1. Add a user environment variable named Admin_email and set the email for your 

administrator (Project > Settings > Project Environment > User Environment Variables).  

2. Define an Email resource with the settings relevant for your email server.  

 

If you do not have the parameters of an email or are not able to define 
or connect to one, you can skip the email step, save the email body to 
the file system, and check the HTML page that was created. 

 

3. Click the Validate button to check the accuracy of the information you entered. 

4. Drag an Email component as the first step and name it Send email to administrator.  

5. Double click on the step. 

6. Add a Quick Send method. 

7. From the To parameter, select the Admin_email environment variable. 

8. In the Subject parameter, enter the following: A new account was added. 

9. In the BodyType parameter, select HTML. 

10. In the Body parameter, select the F.Emailbody variable.  

  



 

 

60 

You’ll now run the Debugger and see if you receive an email. However, since we don’t want 
to run all of the flows, we’ll make the other flows inactive in order to run the Debugger. 

1. Right-click on each of the flows, except the last one, and select Inactive. In the 

Navigation pane, the inactive steps will appear in red. 

 

 
 

2. Run the Debugger from the toolbar with a breakpoint on the Data Mapper step. 

3. Since the trigger’s polling interval was set to 1 minute, you might have to wait 1 
minute until the process starts working. 

4. Check to see if you receive an email. 

 

 
 

5. When you finish working with the Debugger, remove the Inactive status from the flows. 

 

  



 

 

61 

DateTime Fields 

SugarCRM stores DateTime field values as Greenwich Mean Time (GMT). When one of these 

values is returned in SugarCRM, it is automatically adjusted for the time zone specified in your 

organization’s preferences.  

The Magic xpi Date and Time formats do not conform to the SugarCRM convention. You need 

to handle this conversion in your Magic xpi project. 

Syntax DateTimeFormat(date, time, timezone, format) 

Parameters date is any date variable (or a hard-coded date, such as 
'05/06/2008'DATE, or an expression that evaluates to a date). 
time is any time variable (or a hard-coded time, such as 
'16:10:14'TIME, or an expression that evaluates to a time). 
timezone is the time zone that you want to use relative to GMT. 
format is one of the following: 
1 – XML DateTime format, which is YYYY-MM-DDThh:mm:ssTZD. Make 
sure you add the first T as part of the string. 
2 – JDE Julian day format, which is CYYDDD, where C is the century 
(0=1900 and 1=2000), YY is the year and DDD the day of the year. 

Return DateTime string in required format. 
Example If you have: DateTimeFormat('29/04/2008'DATE, '10:45:30'TIME, 

'+03:00',1), it returns 2008-04-29T10:45:30+3:00. 
Note The DATE that you see in the string above, '29/04/2008'DATE, is a 

Magic xpi literal. If you use this literal, the string is interpreted as a 
date. You can use it in arithmetic operations because it’s internally 
represented as a Numeric value. So, for example, 
'01/01/97'DATE+14 is a valid expression that yields the date 
15/01/97. 

 

  



 

 

62 

Exercise 

For your own exercise (a solution is not provided with this seminar): 

 If the customer exists but the contact is a new one, add the contact to the account and add 
this contact to the opportunity. 

 Check that the contact was added to the account successfully. 
 Check that the contact was added to the opportunity successfully. 

 

 

Summary 

In this lesson, you learned how to: 

 Capture SugarCRM events. 
 Trigger a flow when an event occurs in SugarCRM. 
 Define SugarCRM dates in Magic xpi. 

  



 

 

63 

Solutions 

Lesson 2 – Querying SugarCRM via Magic xpi 

In this exercise, you are asked to check whether the products are valid SugarCRM products. 

You are asked to do this if the account exists.  

To perform this you will need a separate flow that will check each product. 

1. Create a flow named Check Items.  

2. Add the following context variable: 

 C.All_Items_Exist, a Logical variable with the default value set to 'FALSE'LOG. 

3. Add the following flow variables: 

 F.ItemCode, an Alpha variable with a size of 100.  
 F.Products, a BLOB variable. This will hold the returned data from the SugarCRM 

query. 
 F.ProductAvailable, a Logical variable with a condition set to 'FALSE'LOG. 

 

 

The ProductTemplates module is the SugarCRM Product Catalog. 

 

  



 

 

64 

Now you will query the ProductTemplates module. 

1. Drop a Sugar connector as the first step of the Check Items flow. Name it Query 

Product Template. 

2. Double-click on the step to open the Sugar Configuration dialog box. 

3. In the Module property, select the ProductTemplates module. 

4. Set the Operation to Query. 

5. Set the Store result in property to F.Products. 

 

 

 The next stage is to map.  

1. In the Data Mapper’s Destination pane, expand ProductTemplates > row > Fields. 

2. Park on the id node and in the Calculated value property, select the F.ItemCode 

variable. 

  



 

 

65 

Now you’ll add a Data Mapper to check that the products exist and that the price is a relevant 
price. 

1. Drop a Data Mapper component under the Query Product Template step. 

2. Name it Check Exists. 

3. Create a new XML source. 

4. In the XSD File property, select the following schema: SugarCRM\XSD\Sugar 

seminar\ProductTemplates.xsd. 

5. From the Variable property, select the F.Products variable. 

6. Create a Variable destination and select the F.ProductAvailable variable. 

The next stage is to map. 

1. In the Source pane, expand ProductTemplates > row > Fields. 

2. In the Destination pane, expand the Instance node. 

3. Connect the status node with the F.ProductAvailable variable. 

4. Set the Calculated value of the F.ProductAvailable variable to:  

Lower (Src.S1/ProductTemplates/row/Fields/status) = 'available' 

We use the Lower function here because if we don’t know how the data is saved in the 

database or application, we want to make sure that when comparing a string that we’re 
forcing everything to be in the same case. 

At this stage the F.ProductAvailable variable should have a value based on the logic that you 

defined in your mapping. In the next step you’ll update the C.All_Items_Exist context variable 

based on the value of the two flow variables. 

1. Drop a Flow Data step as a child step of the Check Exists step and name it Update 

variable. 

2. Click on the Flow Data step. 

3. Click Add. 

4. Set the Action property to Update. 

5. Set the Type to Context. 

6. From the Name column, select the C.All_Items_Exist variable. 

7. Set the Update Expression to 'FALSE'LOG.  

8. Click OK. 

  



 

 

66 

9. Set the following condition for this step: NOT (F.ProductAvailable). This expression 

means that if the product is not available or if the requested price is lower than the 

catalog price, the order cannot be filled and we must set the C.All_Items_Exist variable 

to False. 

 

 

If any of the previous runs of the Check items flow found a product that doesn’t exist, no 

further check should be performed. You can prevent the Check Items flow from running by 

conditioning the first step as follows: 

10. Right-click on the Query Product Template step and set the following condition: 

C.All_Items_Exist.  

Now you need to call this flow for each item; but first you need to initialize the context 

variable. 

1. Open the Scan for New Requests flow. 

2. Drop a Flow Data service as a child step of the Check if Account Exists step. Name it 

Initialize variable. 

3. Double click on the step. 

4. Click Add. 

5. Set the Action property to Update. 

6. Set the Type to Context. 

7. From the Name column, select the C.All_Items_Exist variable. 

8. Set the Update Expression to 'TRUE'LOG.  

Now you are ready to call the new flow. 

1. Drop a Data Mapper component as a child step of the Initialize variable step. 



 

 

67 

2. Name it Check Items. 

3. Double click on the component.  

You need to use the request XML that was retrieved by the Directory Scanner to retrieve the 

request items. Therefore, you need to have an XML as the source. 

1. Add an XML entry to the Source pane of the Data Mapper. 

2. Set the name to RequestXML. 

3. In the XSD File property, select the following schema:  

course_data\schemas\request.xsd 

4. From the Variable property, select the C.RequestXML variable. 

You now need to call the new flow.  

1. Add a Call Flow entry to the Destination pane of the Data Mapper. 

2. From the Flow Name property, select the Check Items flow. 

3. Set the Name property to CheckItemFlow. 

The next stage is to map.  

4. Connect the Product_ID node to F.ItemCode node. 

 

You are ready to test. 

  



 

 

68 

In the course_data/out folder, you’ll find XML requests, including: 

 Existing account and valid products.xml – This includes a valid account and two items that 
exist. 

 Existing account and non existing product.xml – This includes a valid account, but one of 
the items does not exist. 

 Non existing account.xml  
 Non existing account and contact.xml 
 Non existing account and contact for opportunity.xml – This includes another non-existing 

account and contact to be used when creating the opportunity. 

The valid accounts and products, including their IDs, are taken from the sample data that we 

installed. To make sure that the exercises run properly, open the XMLs and change the IDs so 

that they match the IDs that were created for these items when you installed the sample data. 

You’ll run the project three times using the first three XML files. You won’t use the last two XMLs 

file in this exercise. 

1. Add a breakpoint to the Check Items step. 

2. Place one of the XML files in the in folder before running the project. 

3. When the process is finished, for the Existing account and valid products.xml file, 

check that the F.AccountExists variable is set to True. 

4. For the other two files, check that it’s set to False. 

If you get these results, the project is working as expected.  



 

 

69 

Lesson 3 – Adding an Object 

In the exercise, you were asked to add an opportunity if all the items are valid.  

1. In the Scan for New Requests flow, create two flow variables: 

o F.Opportunity, BLOB 
o F.OpportunityID, Alpha 100 

2. Add a Sugar connector as a child step of the Check Items step.  

3. Name the step the following: Write New Opportunity.  

4. In the Sugar Configuration dialog box, from the Module property, select Opportunities. 

5. Set the Operation column to Create.  

6. From the New Object ID property, select the F.OpportunityID variable. 

7. From the Store Result In property, select the F.Opportunity variable. 

8. Click OK. 

You need to connect the opportunity to a specific account. The AccountId is part of the XML 

returned by the Account Query operation. Therefore you can use this as the source. 

1. Create an XML source and name it AccountInfo.  

2. From the XSD File property, select the following: SugarCRM\XSD\Sugar 

seminar\Accounts.xsd. 

3. From the Variable property, select F.Account. 

You are now ready to map. In the Data Mapper screen: 

1. In the Source pane, open the following node: Accounts > row > Fields. 

2. In the Destination pane, open the following node: Opportunities > row > Fields. 

3. Connect the id node to the account_id node. 

4. Connect the name node to the account_name node. 

5. In the Destination pane: 

a. Park on the sales_stage node and enter a calculated value for one of the entries for 

the drop-down list, such as 'Value Proposition'. You can view the entries in the 

Enumeration property. 

b. In the name node, enter: 'Seminar opportunity'. 

c. In the next_step node, enter the following calculated value: 'Send email'. 

The opportunity can only be added if the request is valid. 

1. Park on the Write New Opportunity step. 

2. Set the following condition: C.All_Items_Exist. 



 

 

70 

 

A SugarCRM opportunity has to have an associated Revenue Line Item. 

 

Now you’ll add a Revenue Line Item that’s associated with the opportunity. 

1. Create two flow variables: 

o F.RevenueList, BLOB 
o F.RevenueListID, Alpha 100 

2. Add a Sugar connector as a child step of the Write New Opportunity step.  

3. Name the step the following: Create Revenue Line Items.  

4. In the Sugar Configuration dialog box, from the Module property, select 

RevenueLineItems. 

5. Set the Operation column to Create.  

6. From the New Object ID property, select the F.RevenueListID variable. 

7. From the Store Result In property, select the F.RevenueList variable. 

8. Click OK. 

9. In the date_closed node, enter the following calculated value: AddDate (Date (),0,2,0). 

This means that it will be closed in two months. 

10. In the opportunity_id node’s Calculated Value property, zoom to the Expression Editor 

and select the F.OpportunityID variable. 

11. In the name node’s Calculated Value property, enter: 'Magic products'. 

12. Set the likely_case node’s Calculated Value property to 100. 

You can now test the flow using the Non existing account and contact for opportunity.xml file. 

1. For testing purposes, add a NOP step under the Create Revenue Line Items step. 

2. Put a breakpoint on the NOP step and remove any other breakpoints that are set. 

3. Run the Debugger. 

If the process worked, you should be able to find an opportunity in SugarCRM called Seminar 

opportunity and a revenue line item called Magic products. 


	Magic xpi 4.5 with Sugar Connector Seminar
	Introduction
	About the Seminar
	Course Prerequisites

	How to Use This Guide

	Sugar Connector
	Magic xpi Architecture with the Sugar Connector
	Connecting to SugarCRM
	Installation
	Creating a Project
	Defining a Resource

	Summary

	Querying SugarCRM via Magic xpi
	Preview of the Flow
	Triggering the Flow
	Query Operation
	Check If Account Exists
	Testing Your Project

	WHERE Clauses
	FILTER
	ORDER_BY

	Exercise
	Summary

	Adding an Object
	Adding an Object to SugarCRM
	Exercise
	Summary

	SugarCRM Object ID
	Creating Objects by ID
	Fetching the ID of the SugarCRM Account
	Checking the contact’s existence

	Summary

	Creating a SugarCRM Quote Scenario
	Using the XML Interface to Create a Quote
	Creating the Variables
	Defining a Flow Data Service
	Creating a Quote
	Creating a Product Bundle
	Link the Quotes with the Product Bundle
	Creating Products
	Link the Product Bundle and the Products

	Running the Flow
	Summary

	Capturing Events
	Sugar Connector Service
	Sugar Trigger
	DateTime Fields
	Exercise
	Summary

	Solutions
	Lesson 2 – Querying SugarCRM via Magic xpi
	Lesson 3 – Adding an Object



