

Migration from uniPaaS V1.x to

Magic xpa 3.x

Self-Paced Tutorial

Book ID: UTMU19MA3

Edition: 1.00, March 2015

Course ID: UCMG19MA3

Magic University Official Courseware

 ii

The information in this manual/document is subject to change without prior notice and does not represent a commitment on

the part of Magic Software Enterprises Ltd.

Magic Software Enterprises Ltd. makes no representations or warranties with respect to the contents hereof and specifically

disclaims any implied warranties of merchantability or fitness for any particular purpose.

The software described in this document is furnished under a license agreement. The software may be used or copied only in

accordance with the terms and conditions of the license agreement. It is against the law to copy the software on any medium

except as specifically allowed in the license agreement.

No part of this manual and/or databases may be reproduced or transmitted in any form or by any means, electronic or

mechanical, including photocopying, recording or information recording and retrieval systems, for any purpose other than the

purchaser’s personal use, without the prior express written permission of Magic Software Enterprises Ltd.

All references made to third-party trademarks are for informational purposes only regarding compatibility with the products of

Magic Software Enterprises Ltd.

Unless otherwise noted, all names of companies, products, street addresses, and persons contained herein are part of a

completely fictitious scenario or scenarios and are designed solely to document the use of Magic xpa.

Magic® is a registered trademark of Magic Software Enterprises Ltd.

Btrieve® and Pervasive.SQL® are registered trademarks of Pervasive Software, Inc.

IBM®, Topview™, System i5/iSeries™, System i™, IBM i™, pSeries®, xSeries®, RISC System/6000®, DB2®, and WebSphere® are
trademarks or registered trademarks of IBM Corporation.

Microsoft®, FrontPage®, Windows™, WindowsNT™, ActiveX™, and Windows Mobile are trademarks or registered trademarks of
Microsoft Corporation.

Oracle® and OC4J® are registered trademarks of the Oracle Corporation and/or its affiliates.

Linux® is a registered trademark of Linus Torvalds.

UNIX® is a registered trademark of UNIX System Laboratories.

GLOBEtrotter® and FLEXlm® are registered trademarks of Macrovision Corporation.

Solaris™ and Sun ONE™ are trademarks of Sun Microsystems, Inc.

HP-UX® is a registered trademark of the Hewlett-Packard Company.

Red Hat® is a registered trademark of Red Hat, Inc.

WebLogic® is a registered trademark of BEA Systems.

Interstage® is a registered trademark of the Fujitsu Software Corporation.

JBoss™ is a trademark of JBoss Inc.

Systinet™ is a trademark of Systinet Corporation.

Android is a trademark of Google Inc.

BlackBerry® is a registered trademark of Research in Motion Limited.

iPod, iPad, iPhone, iTunes, and Mac are registered trademarks of Apple Inc.

Portions Copyright © 2002 James W. Newkirk, Michael C. Two, Alexei A. Vorontsov or Copyright © 2000-2002 Philip A. Craig

Clip art images copyright by Presentation Task Force®, a registered trademark of New Vision Technologies Inc.

This product uses the FreeImage open source image library. See http://freeimage.sourceforge.net for details.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/).

This product includes software developed by Computing Services at Carnegie Mellon University

(http://www.cmu.edu/computing/). Copyright © 1989, 1991, 1992, 2001 Carnegie Mellon University. All rights reserved.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://www.openssl.org/).

This product includes software that is Copyright © 1998, 1999, 2000 of the Thai Open Source Software Center Ltd. and Clark

Cooper.

This product includes software that is Copyright © 2001-2002 of Networks Associates Technology, Inc All rights reserved.

This product includes software that is Copyright © 2001-2002 of Cambridge Broadband Ltd. All rights reserved.

This product includes software that is Copyright © 1999-2001 of The OpenLDAP Foundation, Redwood City, California, USA. All

Rights Reserved.

All other product names are trademarks or registered trademarks of their respective holders.

Migration from uniPaaS V1.x to Magic xpa 3.x

March 2015

Copyright © 2015 by Magic Software Enterprises Ltd. All rights reserved.

 iii

Contents

Introduction ... 1

Seminar Prerequisites ... 1

About the Seminar ... 2

Magic Software University .. 2

How to Use this Guide ... 3

Exercises ... 3

Additional Materials... 4

Major New Capabilities ... 5

Runtime Engine Using WinForms Controls ... 5

.NET Code and Controls .. 6

Form Designer Based on Visual Studio ... 6

Mobile Applications ... 6

Offline Applications ... 6

In Memory Data Grid Database .. 6

In Memory Data Grid Middleware ... 7

Migrating Your Project .. 9

Fonts .. 10

Colors .. 11

Migrating a uniPaaS V1.x Project .. 11

Converting an Application with Components ... 13

Importing an Application or Part of One.. 13

Suggested Methodology ... 14

Exercise .. 14

Summary .. 14

Magic xpa MDI ... 15

MDI and SDI ... 16

Multiple Document Interface (MDI) .. 16

Single Document Interface (SDI) .. 16

MDI .. 17

Main Program Form ... 17

Application Properties .. 18

 iv

Application Icon ... 18

Application Caption .. 18

Modified Application Properties ... 19

Environment Properties ... 20

Status Bar ... 20

MDI Color ... 21

MDI Client Area .. 22

Exercise .. 22

Summary .. 22

UI Changes ... 23

Form Designer ... 24

Expression Editor ... 25

Form Properties .. 25

Startup Position .. 25

Form State Identifier .. 26

Control Properties .. 26

Top / Left .. 26

Height / Width .. 27

Style and Border Style ... 27

Horizontal Alignment .. 28

Z-Order Changes ... 28

Text Controls ... 28

RTF Controls .. 29

Edit Controls.. 29

Radio Button Controls ... 29

Static Controls ... 30

Table Controls ... 30

Image Controls .. 30

Push Button Controls ... 30

Choice Controls ... 31

Group Controls .. 31

Tab Controls ... 31

 v

Tree Controls ... 31

Subform Controls ... 31

Unsupported Controls ... 32

ActiveX and OLE Controls .. 33

Summary .. 34

GUI Frames ... 35

Why Use Frames? .. 36

Using Frames .. 36

Automatic Refresh ... 38

Frame Name .. 39

Dynamic Display .. 39

Retain Focus ... 40

Splitter Conversion ... 40

Splitter Placement ... 42

Exercises ... 43

Summary .. 43

End User Functionality .. 45

Adding End User Functionality ... 46

Locate Row ... 46

Ranges ... 47

Sorting ... 48

Print Data .. 48

Unsupported Features ... 49

Exercise .. 50

Summary .. 50

Additional Changes ... 51

Task Behavior Changes .. 52

Task Properties ... 52

Task Modes ... 52

Control Verification ... 52

Changed Functions ... 52

Window Pulldown Menu ... 53

Environment Settings .. 53

 vi

Window Focusing .. 54

Magic xpa Runtime .. 54

Start Application... 54

Internal Events ... 55

Encrypted SQLite Database Support ... 55

Summary .. 56

Solutions ... 57

Lesson 4 – GUI Frames ... 59

Travel Destinations .. 59

List of Deals ... 61

Customer Orders .. 62

Lesson 5 – End User Functionality .. 63

Changing the Print Data .. 63

Adding Print Functionality .. 63

Filtering Field Names .. 64

Introduction 1

Introduction

elcome to Magic Software University’s Migration from uniPaaS V1.x

to Magic xpa 3.x self-paced tutorial. We, at Magic Software

University, hope that you will find this tutorial informative and that it

will assist you in enhancing your knowledge of uniPaaS.

Seminar Prerequisites
Before you start with the seminar there are a number of prerequisites:

Development knowledge Working knowledge of uniPaaS V1.x, preferably V1.9x.

The Studio and Runtime modules of Magic xpa are based on the .NET framework.

The following .NET framework requirements apply:

 To develop an application using the Magic xpa Studio, you must have .NET
framework V4.0 (or above) installed on your machine.

 If you plan to run GigaSpaces on your server, you must have .NET framework V4
(or above) installed on the server.

 To run Online, Rich Client and Browser Client programs, you must have .NET
framework V2.0 SP2 (or above) installed on your client machine.

When using .NET framework V2.0 SP2, you also need to install the Microsoft
Visual C++ 2008 Redistributable. You can install them by running the
NetFx20SP2_x86.exe and VCRedist_x86.exe files from the Scripts\RIA folder.

W

Introduction 2

About the Seminar
The Magic Software University's Migration from uniPaaS V1.x to Magic xpa 3.x

seminar is based on Magic xpa 3.0.

This seminar assumes that you have a working knowledge of uniPaaS programming. It

is designed to help you improve your uniPaaS programming skills.

In this seminar you will learn about:

1. Major new capabilities in Magic xpa 3.x.

2. Migrating an application developed in uniPaaS V1.x.

3. The changes made to the Magic xpa MDI, which provide you with more

control.

4. The changes in the user interface incurred as a result of the upgrade to .NET.

5. The new GUI Frames interface type.

6. The new and improved Form Designer and Expression Editor.

7. Using the new End User Functionality component.

By the end of the course you will:

 Acquire the skills and knowledge required to migrate a uniPaaS V1.x application
to Magic xpa 3.x.

 Become familiar with the new functionality of Magic xpa.
 Comprehend the behavior changes between the versions and practice how to deal

with them as a result of the migration process.
 Know what is no longer supported in Magic xpa.

Magic Software University
MSU offers various courses that may be of interest to you. To see the current offering,

open the following link in your browser:

http://www.magicsoftware.com/en/services/?catID=59&pageID=45&subPageID=756

http://www.magicsoftware.com/en/services/?catID=59&pageID=45&subPageID=756

Introduction 3

How to Use this Guide
In this self-paced tutorial, in each lesson you are first introduced to the subject matter

and then there is an example implementing the theory you have just learned. The

tutorial provides step-by-step solutions for the examples.

This guide also contains boxes with more information and tips. Here is what you may

find:

 This is a hint.

 This is an important note.

 ? This is a question for you.
Something to think about.

Exercises
At the end of most lessons there is an exercise. The solutions for the exercises are

provided at the end of this book. Try to do each exercise on your own before looking

at the solution.

Note that your solution may differ from the solution offered. This does not mean your

solution is incorrect, as there are many ways to solve a problem.

A sample project is provided with this seminar. This is installed together with the

seminar installation and can be found in the Projects folder. The name of the project is

Travel Agency. Open this project when you start the seminar.

Programs are provided as a basis for some lessons. Each set of programs is located in

its own folder in the Program repository.

Introduction 4

Additional Materials
The seminar comes with the following materials:

 Seminar data – This is data, including projects, that you will need during the
seminar’s exercises. The seminar uses the SQLite database, which is a part of the
Magic xpa installation. The seminar’s SQLite database is provided with the
installation. Templates, text files, XML files and images that are used during the
seminar are also provided.

Major New Capabilities 5

Major New Capabilities

Runtime Engine Using WinForms Controls
Magic xpa has a new runtime engine for client/server and server-side applications that

is integrated with the Microsoft .NET framework. This new runtime engine uses controls

from the “Windows Forms” .NET library as the GUI front-end, and allows integration

with any .NET class or third-party library quickly and easily. The .NET-based client was

initially introduced in version 1.x with the Rich Client Runtime engine.

The Magic xpa Runtime engine is an extension of the uniPaaS V1.x Runtime engine. A

new .NET front-end wraps the existing C++ engine, thus enabling both .NET and

unmanaged functionality in a single runtime engine.

The .NET framework provides lots of functionalities, however it is not fully backward

compatible. Most of the incompatibilities in the version were caused by this change.

Lesson 1

Major New Capabilities 6

.NET Code and Controls
With the full integration of .NET, it is now possible to use .NET functionality on

Client/Server applications and also on the server side for Rich Client applications. This

enables you to invoke .NET in a batch process on the server.

To benefit fully from these new functionalities, see the Dot Net 3rd Party Samples

project included with Magic xpa 3.x.

Form Designer Based on Visual Studio
The new Visual Studio-based Form Designer offers an intuitive and user-friendly

experience that makes designing forms even easier. By integrating with Visual Studio,

the new Form Designer now offers an even more enhanced WYSIWYG experience.

Mobile Applications
You can develop mobile applications running on Android and iOS devices with the

same development paradigm as you developed your own application.To benefit fully

from these new functionalities, see the Developing Mobile Applications concept paper.

Offline Applications
You can develop Offline applications, which allow users to continue and be productive

in areas with intermittent, limited or unavailable internet connectivity. While working

offline, data is stored locally on a local database, and periodically, when internet

connectivity resumes, you can synchronize it back to the server.

To benefit fully from these new functionalities, see the Developing Offline Rich Client

Applications concept paper.

In Memory Data Grid Database
Magic xpa 3.x provides a new database gateway, the IMDG gateway, for storing and
accessing data in the space. This gateway is similar to the other Magic xpa database
gateways and enables complete access to information stored in the space.

GigaSpaces provides the opportunity to work with asynchronous persistency in what’s
referred to as Write Behind mode, which provides the ability to handle extremely large

transaction workloads. The data is uploaded from a backend database and is updated

to the space. GigaSpaces then does the work of updating the database server. The

gateway allows access to the data that is connected to the application, while

significantly improving performance and ensuring that data is not lost.

To benefit fully from these new functionalities, see the Deploying Applications on
GigaSpaces concept paper in the Magic xpa Help or the support folder for additional
information.

Major New Capabilities 7

In Memory Data Grid Middleware
Magic xpa 3.0 provides an additional enhanced and robust architecture. The award

winning XAP middleware from GigaSpaces is now supported as a messaging layer,

which uses a distributed, self-healing and scalable architecture. These benefits directly

enhance Magic xpa 3.0 projects. Existing projects upgraded to this version can be

easily scaled to multiple processes and even to multiple machines (scale out) just by

changing external configurations.

Note that the Magic Request Broker middleware is still supported as in the previous

versions.

To benefit fully from these new functionalities, see the Deploying Applications on
GigaSpaces concept paper.

Major New Capabilities 8

Migrating Your Project 9

Migrating Your Project
When you receive a new major release of Magic xpa one of your first tasks is to

migrate your current projects. Each new version adds exciting new features that you

want to implement in your current projects to improve your product. However, some

features that you currently use may no longer be available since the infrastructure was

changed.

The migration of a project is a one-way process. You will learn about migrating your

project in this lesson.

This lesson covers several topics including:

 Changes to fonts
 Changes to colors
 Converting an application
 Importing an application
 Converting an application with components
 Suggested methodology

Lesson 2

Migrating Your Project 10

Fonts
With the upgrade of the Magic xpa engine to .NET, some fonts and font properties are

no longer supported because they are not supported by .NET.

Magic xpa includes the following changes:

 Font orientation for GUI forms is only supported for Label controls and column
headers. You can still use orientation in your reports (forms with a class greater
than zero) for use in PDFs and other forms of output.

 Only TrueTypes and OpenTypes are supported. These are generally files with a .ttf
or .otf extension on the Windows operating system. As an example, MS Sans Serif
is a regular font with an extension of .fon. It is not supported in a GUI form.
Microsoft Sans Serif has a .ttf extension and is supported. The reason is that the
runtime client is a .NET client, which does not support the out-dated fonts. The
Checker will continue to issue errors for non-TrueType fonts until you replace them.
For Output forms, you can use any font that your printer can display.

Your font file from the previous version may contain fonts that are no longer supported.

It is recommended that you make the changes to the font file before you upgrade your

project to the new version.

The course installation process sets the Runtime Application Font Definition File

environment property to point to the font file created under the Projects directory for the

course project.

1. Open the Environment dialog box from the Options > Settings menu.

2. Click the External tab.

3. Zoom into the Runtime Application Font Definition File property.

4. Park on the Text Caption entry and zoom into the Font dialog box. Select

Microsoft Sans Serif.

5. Park on the Text entry and zoom into the Font dialog box. Select Microsoft

Sans Serif.

When you make these changes to your own project it is good practice to search for

where you used those fonts and check the effect it has on the look and feel of your

program.

Migrating Your Project 11

Colors
In V1, an Edit control with a 3D style displayed either a white or a grey background.

The background color you selected was ignored. With the upgrade of the controls to

.NET, the background color will now be visible. The image below shows an example

of the change:

The left image shows Edit controls from a previous version and the image on the right

shows the same program in Magic xpa 3.x. As you can see, the background color of

two of the Edit controls is displayed.

This result may be what you were expecting. If this is not the desired result, you need

to make the change to the color file in the previous version before you convert your

application.

Migrating a uniPaaS V1.x Project
When you open a project that was developed in an earlier version, Magic xpa can

open that version and make changes, upgrading the version to the current version on

the fly.

This is normally a one-way process, so make a backup before
opening your project in a newer version!

1. The course package includes a uniPaaS V1.9 project named Travel Agency.

Copy it into the Projects folder of Magic xpa. You will be working with this

project.

2. From Magic xpa 3.x, go to the File menu and select Open Project. You can

also use the Ctrl+O shortcut.

Migrating Your Project 12

3. Select the Travel Agency project.

When you open a project created in V1.x, Magic xpa automatically opens the

conversion utility.

The conversion utility upgrades your project to the new version. You will no longer be

able to open your project in the previous version. The utility creates a backup if you

require it. You have the choice whether or not to create one.

4. Click Next to continue.

Some of the Client/Server end user functionality, such as runtime range or locate is

now performed using Magic programs, which are available in the End User

functionality component. (This is the same component that was provided in previous

versions for Rich Client only). You will learn more about this component in a later

lesson. The conversion dialog box enables you to add the component to your project.

Once the conversion utility has upgraded your project, a log is created. This log

provides you with information as to what was removed from your project. You will

learn more about these changes during this course. The log is named IMP.LOG and

you will find it in your project folder.

Migrating Your Project 13

Here is an example of a log:

Converting an Application with Components

The conversion utility does not convert components. If your project has components,

you need to upgrade the components first and then create a new ECF of the migrated

component. This is important because the component may contain models that are

used in the current project.

When you upgrade an application to Magic xpa, the conversion process checks the

version of the components. If it finds that a component has not been converted, you

will receive an error message:

Importing an Application or Part of One

Magic xpa enables you to import an application from a previous version or even a

single program. When you import an application, Magic xpa automatically upgrades

the application to the new version. The conversion dialog box will not appear. A

conversion log is still created in the project folder.

If your previous version’s application has components and you have not converted
them, you will receive an error message similar to the one above.

Migrating Your Project 14

Suggested Methodology
You already know how to upgrade an application. To successfully upgrade your

application, here are some steps to consider.

In the previous version:

In Magic xpa 3.x:

Exercise
In this lesson, you imported an application that you will be using during this seminar.

As an exercise, a second application has been provided, Chocolate. This has a

component named Calculate. Migrate the Chocolate project to Magic xpa 3.x.

No solution is provided for this exercise.

Summary
In this lesson, you learned about the migration process. Migrating a project to a newer

version is an integral part of the life cycle of an application.

You learned how to migrate an application and what steps to take in the previous

version to make the upgrade smoother. You learned about migrating an application

that has components. You were provided with a suggested methodology or check list

that you can implement when you start your own migration project.

In later lessons you will learn about the manual modifications you will need to perform

in Magic xpa.

 Check the fonts used in V1.x and if necessary define a different font family.
Remove orientation for fonts on GUI forms.

 Check the background colors of 3D controls. For the purpose of consistency
you may decide to set the background color to white.

 Run the syntax checker on your V1.x application.
 Back up your V1.x application.

 Convert components.
 Convert your project.
 View the conversion log.
 Execute the syntax checker. You need to execute this on models, menus and

programs.
 You then need to make the manual changes.

Magic xpa MDI 15

Magic xpa MDI
In V1, in deployment, you displayed the entire frame containing the system bar, the

status bar as well as the menus. If you did not want to display the menu, then you reset

the pulldown menus. You had little control over the MDI. If you did not want to display

the MDI, you defined an SDI application. You also needed to learn how to define an

SDI application.

The current version gives you full control of what to display in the MDI: the size of the

frame, the position, the status bar messages and other properties, all encapsulated in a

single place – the Main Program.

This lesson covers several topics including:

 MDI frame
 Application properties
 Environment properties
 MDI color
 Status bar

Lesson 3

Magic xpa MDI 16

MDI and SDI
Within the Windows operating system, a window that contains a title bar is sometimes

referred to as a document. The Multiple Document Interface (MDI) and Single

Document Interface (SDI) are methods for handling windows.

The MDI and SDI functionality enables an application to open and concurrently

execute several tasks.

Multiple Document Interface (MDI)

This method uses a single primary window, which is the parent window, to visually

contain a set of related child windows. Each of the child windows is a primary

window, but it is constrained to appear only within the parent window. Child windows

share the menu bar, status bar, toolbar and other parts of the parent window interface.

 The MDI enables you to open more than one window simultaneously. The child

windows automatically close when their parent window is closed. It is a user interface

characterized by an open space that can hold one or more open windows, all

enclosed in a single frame with one overhead menu. MDI is useful because one

overhead menu can be used for any of the child windows, reducing clutter.

Single Document Interface (SDI)

The SDI window opens each document in its own primary window. When a new

window is opened, the operating system places an entry on the taskbar, making it

easy to access the content of this window.

An SDI form has its own menu, toolbar, and entry in the status bar. The desktop and

taskbar provide the user with ways to manage the primary windows. Secondary modal

windows are used to view information about objects in the primary window. The SDI is

not constrained to a parent window. It is a "standalone" window, and is not part of

the MDI. In many ways, it acts as if it were its own application, even though several

SDI frames might be running under the same application.

Magic xpa MDI 17

MDI
The MDI comprises various components as you can see from the screen capture below.

The screen capture was taken from an earlier version.

The application icon is in the top left section of the MDI and appears in the top left of

each program’s frame. The application caption is what appears both at the top of the
frame as well as on the Windows task bar. The pulldown menu is visible together with

the toolbar. Then you have the working area where all the programs are displayed,

unless they are floating or SDI. At the bottom of the form, you have the status bar

where the user receives error messages and can see the mode of the current program

and other options.

In V1, you could manipulate some of these issues but the properties were spread

around. In Magic xpa, the client/server runtime MDI window is no longer hard-coded

into the runtime engine. Each application can define its own MDI window properties in

the Main Program.

Main Program Form
The Main Program has a form. In V1, you used this form for global displays such as

wallpaper, a logo, the date and others.

The Main Program's form works just as the other program forms do, except that they

will show as long as the project is running, behind other task forms. You cannot have

any data entry on the Main Program form, but you can have action controls, such as

push buttons.

In V1, the Main Program’s form was not displayed unless you implicitly set it to “Yes”
by setting the Task Properties->Interface-> Form->Open task window property to Yes.

This behavior has changed in Magic xpa and by default the Open task window

property is set to Yes. The form Window Type is automatically set to MDI Frame.

In this lesson, you will learn more about how this enhances your application.

Application

icon

Application

caption

Application

menu

Working area Status bar

Magic xpa MDI 18

Application Properties

Application Icon

You can provide your own icon for your application. In V1, this option was available

in the Application Properties dialog box. In Magic xpa, the Icon File Name property is

now in the Main Program. As with any program, you set the program’s icon in the
Task Properties dialog box in the Interface tab. If you do not set an icon name, you will

receive the default Magic xpa runtime icon.

Application Caption

The application caption is what appears at runtime as seen in the image on the

previous page. In previous versions, the name that you provided when creating the

project is the name that would appear during runtime. In Magic xpa, this is no longer

the case. When you run the project, you will receive Main Program as the caption, as

seen in the image below:

In V1, you could provide your own name for the application by setting a value in the

Caption property in the Application Properties dialog box; thereby providing a more

meaningful name to your application.

The Caption property is no longer a part of the Application Properties dialog box. It is

now the Form Name of the Main Program. If you set the Caption property in V1, the

conversion utility sets the Form Name to what was defined in the Caption property.

You can keep the previous behavior by using the AppName() function. The

AppName() function fetches the name you provided when you created the project. You

implement this by setting the Form Name property to AppName().

If you used a logical name in the Caption property you will need to define an

expression using the Translate () function.

It is good practice to provide a caption for your application.

Magic xpa MDI 19

Sometimes the project name is needed when you need to invoke the application

externally, such as from the command line. As before, you can continue this behavior

by setting the Form Name property to AppName().

Modified Application Properties

As the Main Program form is the same as other forms, a number of properties from the

Application Properties dialog box were moved to the form:

Application Property Form Category Form Property

Caption Details Form Name

System Pulldown Menu SDI Pulldown Menu

The Main Display task property in the Main Program enables you to define several

MDI frame forms and dynamically display the required form at runtime.

The Main Program's Task Properties dialog box contains a new property called Run

project as, which determines whether the Online or Rich Client MDI frame will be

shown when running the project from the Studio (Ctrl+F7).

In V1, it was possible to show a Main Program form over the MDI and thus show static

controls. This is currently not supported.

Magic xpa MDI 20

Environment Properties
Some MDI environment properties were removed from the INI and moved to the Main

Program form or removed altogether. You need to update the values manually in the

converted project:

INI Property Form
Category

Form
Property

Comments

RtToolBarGUI SDI Display
Toolbar

Part of the MDI.

MDIClientEdge Not supported.

MDIClientImageFile Appearance Wallpaper Not supported for Studio. This
setting was moved into the Main
Program’s form as the
Wallpaper property.

MDIClientImageStyle Appearance Wallpaper
style

Partially supported. This setting
was moved into the Main
Program’s form as the
Wallpaper Style property.

DeploymentMode=SDI Removed.
This is part of the SDI
application mechanism. To
implement this functionality in
Magic xpa, you need to simply
hide the MDI window. To do this
you simply set the Task
Properties’ Open task window
property to No.

Status Bar
You now have full control over whether the status bar is displayed. By setting the

Display Status Bar form property to No, you can hide the status bar from displaying.

Bear in mind that status line error messages such as “Invalid Date” or “Duplicate
Index” will no longer be displayed to the end user. Your own developer-defined Verify

Operation messages that are defined as Status will also not be displayed.

The current user name is no longer displayed on the status bar. You can address this

problem by displaying the user with the User(1) function anywhere on your MDI form.

You can check the Magic xpa Help for an explanation about this function.

Magic xpa MDI 21

MDI Color
In V1, the background color of the MDI was always the standard grey color as seen in

the image below:

This was hard-coded with no option to change it. In Magic xpa, you have full control

over the color displayed in the Main Program form. The MDI

area uses the color set in the Color form property. After

migrating the application, the default MDI color is the

default Application Color Window’s Default color.

This is a different color from the MDI area of the previous

version. For backward compatibility you can do the

following:

1. Zoom into the Application Colors

dialog box.

2. Add a new color and name it

MDI Form Color.

3. Zoom into the background color

(BG).

4. From the System property combo

box, select Application

Workspace.

5. Use the new color in the Color property.

In Magic xpa, the MDI Form color is one of the colors provided out-of-
the-box in the standard clr_rnt.eng file.

Magic xpa MDI 22

MDI Client Area
The Main Program form defines your MDI. By setting the Width and Height properties,

you have control over the size of the MDI. Bear in mind that other programs with

Window Types set to MDI Child are displayed within this area. They cannot be larger

than the MDI frame. They will be resized during runtime.

The conversion process sets the Startup Mode of the Main Program form to

Maximized. However, you need to take the form size into consideration in future

development projects. You should also taken into consideration that the MDI pulldown

menu does not support a multi-line menu.

Exercise
Open the Chocolate application that you migrated in the previous lesson.

 Set the application caption to Chocolate Store.
 Set the application icon to the msu.ico icon. This icon can be found in the env

directory.

No solution is provided for this exercise.

Summary
The Magic xpa MDI frame is no longer hard-coded. You have control of whether it

appears, its look and feel, and what is displayed and what is not. All of this is part of

the Main Program.

The Main Program’s form behaves like other forms and, by default, the form is
displayed. This is now your MDI frame.

You also learned what properties were moved to the Main Program.

UI Changes 23

UI Changes
V3 introduces a new Visual Studio-based Form Designer for Display forms as well as a

new Expression Editor.

The GUI controls provided by Magic xpa and displayed on the client computer are

.NET controls from the Windows Forms .NET library. As a result of this upgrade, some

control properties that were available in previous versions, are no longer available

and other properties have merged.

You will learn more about the changes in this lesson.

This lesson covers several topics including:

 The new Form Designer
 The new Expression Editor
 Changes to control properties
 Changes to controls
 Unsupported properties
 Unsupported controls

Lesson 4

UI Changes 24

Form Designer

The Form Designer for Display forms is based on Visual Studio and includes:

 A Visual Studio-based workspace
 Docking capabilities
 Mobile Preview functionality
 A Toolbox that replaces the Control palette
 A Variable pane that replaces the Variable palette
 A Model pane
 A Document Outline view that allows you to locate controls and move them to

container controls
 Quick search capabilities in the property list and pick lists that are opened from

the designer
 An improved Table control with visual indication for dropping controls over it and

automatic attachment of controls to the proper columns

UI Changes 25

Expression Editor

The Expression Editor was updated to include:

 Improved Auto Complete functionality for functions
 On the fly coloring of the expression and expanded view
 Improved error indications
 Embedded pick lists in the right pane
 Quick search capabilities

Form Properties
There are some changes to the form properties.

In the Wallpaper properties, Truevision targa images (TGA) are no longer supported.

The Automatic Tab Order and Automatic Z-order options were moved from the

Command palette to the form properties.

Startup Position

The Startup Position of Default was renamed to OS Default Bounds. In this option, the

form is positioned according to the operating system’s default location and the initial
size is determined by the operating system.

A new option was added named OS Default Location. In this option, the form is

positioned according to the operating system’s default location but the dimensions of
the form are governed by the measurements defined on the Magic xpa form by the

developer.

UI Changes 26

Form State Identifier

The Form State Identifier enables the user to keep the state of the form between

sessions. In V1, you provided a name for the form. The state of each form was saved

individually according to the name your provided.

The Form State Identifier property has changed to Persistent Form State and the

optional values are True/False. You no longer provide a name.

As in V1.x, you can use the FormStateClear() function to return the state back to the

default, the properties set by the developer. A blank parameter, '', will clear the

current form. An asterisk, '*', clears all of the current project’s forms. That means that if
you cleared a form named MSU using the function: FormStateClear('MSU'), you will

need to manually change it to: FormStateClear('').

Control Properties
Expressions are re-evaluated only if the expression contains a variable that was

changed. In previous versions, the expression was re-evaluated whenever a recompute

occurred.

Top / Left

To standardize both the Rich Client and the Online paradigms, the Left and the Top

properties have been renamed to X, for Left, and Y for Top. The functionality remains

unchanged.

The CLeft() and CTop() functions have now been renamed to the existing Rich Client

functions, CX() and CY(). This facilitates a move from one paradigm to the other.

The CLeftMDI() and the CTopMDI() functions have been removed. In previous versions,

these functions returned the position of a control relative to the MDI.

When the control is linked to a container, such as a Tab or a Group
control, the X and Y values are relative to the container and not to the form.

This means that:

 Any expression used in the location properties of controls that are
attached to a container control will not work correctly and should be
changed.

 Placement values of controls that are attached to a container control
may not work correctly and should be changed.

UI Changes 27

Height / Width

Online forms now have a minimum Height and Width, which is set by the Windows

operating system.

The minimum size is set by Windows.Forms based on the Border Style of the form.

If you need to define smaller forms, you can use the following workaround:

1. Add the following line in the Task Prefix of the program:

DNSet(DotNet.System.Windows.Forms.Form.FromHandle(WinHWND(0)).Size,

DotNet.System.Drawing.Size(65,24))

65 and 24 are the form’s Width and Height.

2. Add the following two .NET libraries to the CRR:

 System.Drawing
 System.Windows.Forms

Style and Border Style

These properties were merged into a single property, either Style or Border. Some

properties are not supported by Windows Forms and are therefore are no longer

supported in Magic xpa.

As an example of the change, look at the Edit control. In V1, all of the following

properties were available:

Style Border Style

2-D Thin

3-D Raised Thick

3-D Sunken No Border

Windows 3D

The ones that are no longer valid are crossed out. These are not supported in

Windows Forms and have been merged into the Border property. Valid values are Yes

or No. As an example, an Edit control on a table will be Border=No. This is also how

you would display a 2-D Edit control.

UI Changes 28

Horizontal Alignment

The Horizontal alignment property for List Box, Combo Box, Tab, Group, Rich Edit

controls is not supported.

Note: Right and Left alignment on some controls can be achieved using the RTL

property.

Z-Order Changes

Windows Forms do not allow controls that are not connected to the container (in other

words, not linked to the container) to be displayed “on top” of the container. As a
result they will appear behind the container. They will not be visible unless the

container itself is invisible.

The migration process will automatically attach such controls to the container control.

The following are some special cases regarding the container controls:

Container Previous versions Magic xpa

Tab Unattached controls appeared on each tab. The controls will now
be behind the Tab
control. The
migration process
will automatically
attach these controls
to the first tab.

Table Controls such as Edit controls and Text controls
that were manually added to the Column header,
appeared in the table header.

The controls will now
be behind the table.

Table Controls could be stretched to more than one
columun

The controls will now
be seen in one
column only.

Text Controls
The Text or Static control has now been renamed to Label. The functionality remains

the same.

You can know use an expression to set the text displayed in the label.

The Line Width and Line Style properties are no longer supported.

UI Changes 29

RTF-related properties were removed from the Label control and Label-related

properties were removed from the RTF control. To achieve the same functionality as

Enable RTF=Yes, you can define an RTF control.

RTF Controls

The RTF Edit control has no built in context menu. If you want to give the end user the
ability to change the color or font of an RTF control, you can define a menu with the
Magic xpa internal events, such as Change Color, Change Font, Align Left, and Align
Right, and assign this menu to the control's Context Menu property.

The RTF Edit control and RTF Text control no longer support a transparent background
color.

Edit Controls
As in V1, if an Edit control is not large enough to display all the data, the user is able

to click the Wide keyboard shortcut (F6) in order to increase the display; thereby

displaying more data. In V1, you were able to define a form that would be displayed

when the user selected the Wide operation (F6). As of Magic xpa, the developer

defined form is no longer supported. The default Magic xpa expansion window is

displayed instead. You can reproduce the previous behavior programmatically by

trapping the Wide event and calling your own program. If you used a form in a

previous version for the Expansion Window option, it is not removed by the conversion

utility. You can remove it manually.

In an Edit control with Multi-line edit, you were able to define whether to display the

scroll bars. The Show Scroll bars property has been removed. The Word Wrap option

has been added to the Horizontal scroll property.

When parking on an Edit control and the value of the variable attached to the control
is changed by an Update operation, the new value will be seen immediately (in V1 it
was seen after leaving the control).

Numeric calculations (such as writing ‘2+’ in the control) are no longer supported.

Radio Button Controls

The Multiline property for Radio Button controls is not supported when the Appearance

property is set to Button.

UI Changes 30

Static Controls

The following properties are not supported in Static controls:

 Static Type
 Line Width
 Line Style

Table Controls
In V1 it was possible to define a specific column as a marking column. To do this you

opened the Column properties sheet and defined Marking column=Yes. In Magic xpa,

a row is marked by clicking on it. The Marking column property has been removed.

The following properties are also no longer supported:

 Style
 Table in Window
 Last Divider
 Keep Width

It is not possible to use a List Box control in a Table control.

Double clicking on the table column divider will not resize the column.

Scrolling with the mouse is only enabled when parking in the table.

Image Controls
The Image control is now a display-only control. All file input capabilities have been

removed. All input properties, such as Must Input, have been removed.

The Border options are now 2D, 3D Sunken or No Border. The image default

(inherited value) is now No Border.

Truevision targa (.TGA) images are no longer supported.

Push Button Controls
The following changes have been made to the Push Button control:

 The name of the control was changed from a Push Button control to a Button
control.

 The Text on Image Button style property and the Image Button Button style property
have been merged. The style is now Image Button. The conversion utility will
convert buttons that were set with the Text on Image option into Image buttons.
To reproduce the Text on Image feature, add text to the Format property.

 The Hyper Text button color is now taken from the Windows color definitions.

UI Changes 31

Choice Controls
Radio buttons, list boxes and combo boxes have

their various options displayed from three

properties: Items List, Display List and Data Source.

All these options have now been grouped under a

new group named Data Source. The Source table

property has been renamed to Data source number.

Group Controls
The location of the groups’ top line is set according to the Group control's font, even if
no text is set for the control. If you want the line to appear at the top of the Group

control, you need to use a font with a size of 1.

Tab Controls
In V1, you needed to provide a default value for the Tab control so that it would park

on the first tab. In Magic xpa, the first tab is always selected by default.

The Right and Left options of the Tab Control Side property were removed.

The Tab control header color is defined by the Windows operating system and cannot
be manually set.

Tree Controls

The Tree control does not support multi-marking, drag and drop, or a transparent

background color.

Subform Controls
In V1, the Subform behavior was hard-coded. When the parent task loaded, so did the

Subform task. When the Subform was either connected to a container, such as a Tab

control, or else had an expression on its visibility, there was difficulty in understanding

when the Subform task would be loaded.

Magic xpa provides you with a new property, Refresh When Hidden, so that you can

define when the Subform loads. You also have the ability to load and refresh the task

running in the Subform control in the same way as it was done in previous versions.

A value of No indicates that the Subform task will only be called if the Subform is

visible. This is similar to the behavior in previous versions when the Subform had an

expression on the Visible property.

UI Changes 32

A value of Yes means that the Subform tasks will be called initially after the Record

Prefix of the host and again after every refresh of the Subform. This is similar to the

behavior in previous versions when the Subform was attached to a container control

and the container control was hidden, such as a specific tab in the Tab control.

If you have nested Subforms defined with a value of Refresh When Hidden=No, the

nested Subform will behave as the parent. Therefore if the parent’s Subform is defined

with a value of Refresh When Hidden=Yes, then when the parent refreshes, the hidden

nested Subform will be refreshed even though the child’s Subform is defined with

Refresh When Hidden=No.

In V1, when the user clicked on a Subform control, the Control Prefix and Control

Suffix of the first control were always executed. In Magic xpa, the behavior has now

changed. Only the Control Prefix of the clicked control will be executed.

If an Online task running in a Subform control cannot be executed, the subform will

close (and not the entire program, as in V1).

Unsupported Controls
Some controls were removed because they are not supported in .NET:

Control Comment

Splitter The Splitter control is no longer available. The functionality is
achieved using the new GUI frame feature. You will learn about
GUI frames in the next lesson.

Horizontal Slider
and Vertical Slider

Not supported. Use a third-party .NET control. If you defined
Slider controls as models, they will still appear in the project’s
Model repository after the conversion. You will need to remove
these models.
The conversion process will automatically remove Slider controls
defined in a form. However, any variable or expressions used in
the Slider controls’ properties will still exist and may result in a
warning message when you run the Syntax Checker.

Ellipse Not supported. Use a third-party .NET control.

Rectangle Not supported. The conversion utility converts this to a Label
control.

UI Changes 33

ActiveX and OLE Controls

ActiveX and OLE controls are not supported in the Windows Forms framework. The

conversion process does not remove the ActiveX and OLE controls. They are kept for

information only. The program will not pass the Syntax Checker.

You need to either:

 Use the Microsoft aximp .exe utility, which can create the .NET class wrapper for
you. This has an advantage in that you already know the exposed functions.
However, this method is not recommended as it will not always works properly.

 Use native or third party .NET controls to replace the ActiveX and OLE controls. If
you defined AcitveX or OLE controls as models, they will still appear in the
project’s Model repository after the conversion. You will need to remove these
models.

Non-visual COM objects that are not ActiveX are still supported.

UI Changes 34

Summary
The change to Windows Forms resulted in welcome changes to many of the Magic

xpa controls. However, some properties that you were used to, are no longer

supported in the new version.

Controls such as the Ellipse, the Rectangle and the Sliders are not supported. If you

need these controls, you can use .NET controls to achieve the same functionality.

The ActiveX control is no longer supported. However, you can wrap the control with a

.NET class.

The Splitter form was upgraded and is now a GUI Frame. You will learn about GUI

frames in the next lesson.

GUI Frames 35

GUI Frames
Often you need to create more sophisticated forms. Frames enable you to divide a task

into multiple sections, each of which displays a different program.

Frames work similarly to Subforms. However, with a frame, the user can easily resize

each section by dragging the divider bar.

Frames can be nested, and also used in conjunction with Subforms and tabs, to create

elaborate user interfaces.

This lesson covers several topics including:

 Using frames
 Frame name
 Dynamic display

Lesson 5

GUI Frames 36

Why Use Frames?
The best feature of frames is that the end user can define how much information to

display by resizing each section. If you have an order-lines scenario and you use a

Subform, the display remains as defined by you, the developer. However, by using a

frame, users can then decide that they want to increase the lines section to show more

lines. The decision is in the users’ hands.

With a frame you can keep one part of the page static while changing another part.

So you can use it for navigation menus, similar to the Windows Explorer view.

Frames allow you to keep pertinent information always on the screen. One frame is

always in view so that you can use this as the master frame. You can also show other

information that has no relation to the master frame.

Using Frames
The GUI Frames form is an Interface Type of Class 0. A frame can only be used in

interactive programs.

In this example you will have a simple scenario in which you will display the list of

customers and for each customer show the list of trips they have taken, a simple one-to-

many scenario.

1. From the Frames folder, copy the Customers program. This program displays

the list of customers as well as a few personal details about each customer.

2. Zoom into the Form Editor.

When you execute a Magic xpa program, the first form of the program
with Class=0 is the default form, the form that will be displayed in runtime.
In this example you want to display a frame. However, you already have a
pre-designed form. You can change the Interface Type from GUI Display to
GUI Frames, but that will remove all the controls on the form. To handle this
issue, you can duplicate the form and define the first form as a GUI Frame.

3. Park on the Customers form and select Repeat Entry from the Edit > Entries

pulldown menu. You can also use the Ctrl+Shift+R keyboard shortcut. Duplicate

the entry.

4. Park on the first Customers entry and rename it to Customers Frame. This is

simply to distinguish it from the regular form. Set the Interface Type to GUI

Frames. You will get a Confirmation dialog box: All controls will be deleted.

Select Yes.

GUI Frames 37

The first step in a frame set design is to select the main frame structure. Magic xpa

provides you with pre-defined frames so that you can divide your frame horizontally or

vertically. Each frame is a different program. In this example, you will be dividing the

frame horizontally.

5. Zoom into the GUI Frames form named Customers

Frame. You will see the palette where you selele ct the

format of your frames. Select the top left option, which

divides the frame horizontally.

After defining a GUI Frame and setting up how the frame is divided
up, you are unable to change the divisions. If changes need to be
made, you will need to redefine the frame divisions.

Each frame displays a different program. In this case, the upper frame will be the

master frame. Here you want to display the current program, the customer list.

6. Park on the upper frame and zoom into the frame properties.

The Connect to property enables you to select whether a program, a subtask or a form

will be displayed in the frame area.

7. Set the Connect to property to Form.

8. Zoom from the PRG/TSK/FRM num property and select the Customers form.

The Customers form will now be displayed in the upper frame. However, you want the

dimensions of the frame to fit the current form size.

9. Park on the frame in the Form Editor and open the context menu. Select Fit to

form. This will set the dimensions of this frame to meet the dimensions of the

form.

When you define the Connect to property as Form, you are setting the
primary frame for the program.

GUI Frames 38

You now want to display the Orders program in the lower frame.

10. Park on the lower frame and zoom into the Frame properties.

11. Set the Connect to property to Program.

12. Zoom from the PRG/TSK/FRM num property and select the Orders program.

13. The Orders program requires a parameter. Zoom into the Arguments dialog

box.

14. Create a line and select the Customer_code variable.

Now when you run the Customers program you will have a frame. You can increase

the size of the upper frame or the lower frame by moving the dividing bar.

?
When the GUI Frame is defined as the first form, it is automatically
displayed when the program is executed. How can you define that a
different form will be displayed instead?

The GUI Frame is a form like any other form and therefore may be used in an

expression using the FORM literal. You can therefore define an expression in the Main

Display task property. As an example, you can have an expression such as:

IF (Logical expression, 2'FORM',3'FORM'). It is good practice to use the literal to

avoid problems if you move the forms around. Remember that this expression is

evaluated when the program loads.

Automatic Refresh

In the example, you saw a situation in which there is a one-to-many scenario, the

bottom pane behaving like a Subform. The frame property, Automatic Refresh,

behaves as it does in a Subform, meaning that when set to Yes, the frame view is

automatically refreshed when any of the parameters are changed, in this case the

Customer_code. This property is not available when the Connect to property is set to

Form. When it is set to Form you are referring to the current program, so there are no

parameters passed that affect the behavior of the frame.

When a frame is defined with Automatic Refresh set to Yes, then whenever any of the
arguments passed to the program are changed, this will invoke a change in the called
program. If the called program has a range based on the parameter, then new records
will be fetched from the database. This has an effect on the performance of the system.
For a large data set, this may cause unwanted overhead.

When you pass a number of parameters in which each parameter may be updated in

the parent record, you may decide to set Automatic Refresh to No. This will cause less

overhead. An example of a form like this would be a Search filter in which the user

GUI Frames 39

would enter the search parameters and click an action button. In the logic unit of the

event invoked by the button you would manually refresh the frame.

Frame Name

In the previous hint it was recommended to set Automatic Refresh to No for cases

where there are many arguments that may be modified. In those cases, it is good

practice to use a push button. But, how do you

perform a refresh of the frame?

One of the properties of a frame is the Frame

name. This name must be unique in order to

identify it.

The Subform Refresh Internal event receives a Frame name as a parameter and

refreshes the frame indicated by the name. In this way you can manually refresh the

frame. The necessary steps would be:

 Define an event, Refresh Orders Frame.

 Create a logic unit for the Refresh Orders Frame event.

 Raise the Subform Refresh event and pass the name of the frame you want to

refresh, such as Orders.

Dynamic Display

The dimensions of the frame are as defined by the developer. The user can decide to

decrease or increase a section by moving the divider. But how can you dynamically

remove a frame? You are probably asking: Why would I want to? You may have a

situation where the form is split vertically and the right frame split horizontally, similar

to the fifth option in the Frames palette. In the left frame you display a menu and

according to whatever is clicked, you want the right pane to display one or two

frames.

When you display a frame, you call a different program or form. This form may also

be a frame so that you have a situation with nested frames. One solution for nested

frames is to have the called program define whether it is a form or a nested frame.

When the secondary frame has a relationship such as a one-to-many scenario, this is a

reasonable solution. However, what happens when the programs displayed in the

frame are not dependent on one another, such as an overall view or a dashboard

view?

Another solution is to have an expression on the dimensions of the secondary frame,

either the height or the width, depending on whether the frame is split horizontally or

vertically. You can then define the size as zero. When you define the size as zero, the

divider is still visible and the program is still called. When the size is evaluated to

zero, you will still need to define a program that will be displayed. However, this can

GUI Frames 40

be a dummy program. You will also need to set the Tab Into property and the Enable

Park property to No.

The Call Program operation has a Destination property. Here you set
the name of the frame where you want the program to be displayed.

This is also useful if you want to replace the program in a Subform.

Retain Focus

The Call operation has a property called Retain Focus. When you call a destination

Subform or Frame, this property defines whether focus remains in the current task and

control or is moved to the first control of the called program. It is enabled only when:

 The Destination property has a value.
 The Call Program operation is called from a logic unit other than the Task, Record

or Control logic units.
 The program is not the Main Program.

Splitter Conversion
The splitter from V1 is no longer supported. When you defined a splitter you called a

program from the Record Prefix logic unit that would be displayed in the splitter

section.

This program generally had the following characteristics:

 An End task condition set to: Level (1) = 'RP'
 A Window Type set to Splitter Child

The conversion process for a program containing a splitter does the following:

 Adds a GUI Frames form as the main form of the program. The added form will
include a reference to the existing form in one of the frames.

 Converts the Splitter window into a GUI Frame with the same dimensions. The V1.x
splitter window could only be split horizontally or vertically, so the GUI Frame is set
accordingly.

 Evaluates which frame was defined as the V1.x Primary Display property and
replaces that by setting the Connect To property to Form and displays the original
form.

After the application is converted, you need to execute a number of steps manually.

You may already have worked out what steps you need to perform. You will need to

make changes both in the GUI Frame program and the called program.

GUI Frames 41

In previous versions, in the splitter program, you called a program from the Record

Prefix. This program would be displayed in the splitter pane, if the Window Type was

set to Splitter Child. In Magic xpa, you need to make the following changes:

1. Zoom into the splitter converted program. As an example, the Customers

program from the Conversion folder.

2. Zoom into the GUI Frames form and park on the secondary frame, the one that

is currently not connected to a program, task or form.

3. Set the Connect to property to Program.

4. Set the PRG/TSK/FRM num to point to the Orders program.

5. Zoom into the Arguments property and send the Customer_Code variable to

the Orders program.

You now need to remove the Call Program operation itself.

6. Zoom into the Record Prefix logic unit.

7. Delete the Call Program operation to the Orders program.

If you called either program A or program B depending on a certain
condition, you will need to implement the same logic in the frame
itself.
However, if you called program A or subtask B depending on a
condition, you will need to implement subtask B as a program. The
GUI Frame does not currently enable you to have an expression for
the Connect to property.

In the called program, you only need to remove the end task condition:

8. Zoom into the called program such as the Orders program from the Conversion

folder.

9. Open the Task Properties dialog box and set the End Task Condition property

to No. Since the program is no longer called from the Record Prefix, there is no

meaning to the original condition. You can also set the Evaluate condition

property to Before entering record.

10. The form property, Window Type was set to Child by the conversion program.

Splitter Child is no longer supported. You do not need to make any changes

here.

GUI Frames 42

11. The SplitterOffset function was removed. The Conversion utility will not delete

the removed function from the Expression Editor. You should manually fix the

syntax errors caused by this change.

12. A model of a splitter form is converted into two models – one for the frameset

and one for the display form. If the form has a model attached from a

component, you need to manually assign the display form model to the display

form.

Splitter Placement

The Splitter placement property is no longer supported. It is converted automatically to

either Horizontal Placement or Vertical Placement. The conversion utility makes the

following conversion: The new placement options are either Yes or No.

 If the Splitter placement value was 100, then the master frame will have Vertical
Placement=Yes and the secondary frame will have Vertical Placement=No.

 If the Splitter placement value was 0, then the master frame will have Vertical
Placement=No and the secondary frame will have Vertical Placement=Yes.

 Another value will have both placement values set to Yes.

GUI Frames 43

Exercises
1. Define a program named Possible Locations. Display the list of locations that

are available as travel destinations. This program must also display the list of

airlines that fly to those locations as well as the list of tourists who flew to those

cities.

Implement this with frames so that the users can change the dimensions of the

frames themselves.

2. As an extra example, in the top frame of the Possible Locations program, also

show the list of deals, past and present to that location. Give thought to the

solution here.

3. During the lesson, you defined a program where you displayed the list of

customers and the list of their orders. Each order also has details, the locations

and the dates of each trip. Add the details of each order in a frame to the right

of the list of orders.

Summary
In this lesson, you learned about the GUI Frame. Frames were first implemented in the

previous version in interactive programs for the Rich Client environment. It has been

extended to the GUI framework to enable you to take advantage of the new

functionality.

You learned how to implement the GUI Frame and learned some tips that will improve

the performance of your application.

You learned what steps you need to perform when you upgrade your application from

previous versions.

GUI Frames 44

End User Functionality 45

End User Functionality
Enabling the end user to perform their own ranges, locates and sorts is an integral part

of the usability of any application. Enabling the end user to define their own reports

on-the-fly brings their application to new levels. This was always a part of the Magic

xpa offering.

In V1, the functionality provided by Magic xpa was hard-coded into the engine.

The End User functionality is now provided as a component, providing an interface for

the user to perform the Range, Locate, Sort, and Print Data capabilities.

The source code for this component is also available so that you can customize the

screens of the component as you wish.

This lesson covers several topics including:

 End user component
 Range, Locate and Sort
 Print Data

Lesson 6

End User Functionality 46

Adding End User Functionality
The component is added by default to any new project. As you already learned, the

conversion application enables you to add the component when migrating your

application.

If you elected not to add this during the migration you can add it at a later stage:

1. In the Composite Resource Repository (CRR), create a new line.

2. Zoom to select the UserFunctionality.eci application from the

Add_On\UserFunctionality directory.

Unlike V1, if you do not add this component, the end user will not
have the functionality; Range, Sort and Locate will not work.

The End User Functionality component was built using the various Magic xpa

DataView functions. As a result, when using this component’s functionality on a task

that has two variables with the same name, only the first variable will be used. As in

previous versions, you can rename a variable or a column in the task so that it will be

visible in the dialog box.

Locate Row
Locate enables you to park on a certain row in the data view. When you invoke Locate

Records (CTRL+L), you are provided with a dialog box for you to select the locate

criteria.

End User Functionality 47

In the Name column, you have a combo box with all of the variable names from the

task. Remember that these are displayed to the end user, so instead of having a

variable named CustCod, you may want to provide a more meaningful name, such as

Customer code.

You can add additional search criteria by adding a new row. You do this using the

Create Records keyboard shortcut (F4).

Remember that if identical names are used in a task, only the first will
be used.

Expressions are not supported.

Ranges
The Range of records capability is now provided as a part of the End User

Functionality component. When you invoke Range of records (CTRL+R), you are

provided with a dialog box for you to select the criteria.

You work with this dialog box in the same way that you work with the Locate record

dialog box.

End User Functionality 48

Sorting
The Sort dialog box works very similar to the Locate and Range dialog boxes.

However, here you define whether you want the selected variable to be sorted

ascending or descending. You

can access the dialog box using

the CTRL+T shortcut.

You can create various levels for

the same sort, the top level being

at the top of the table. In the

image on the right, the table will

first be sorted by the customer

name and then by the discount in

which the discount is displayed

with the highest discount first, in other words in descending order.

Print Data
The Print Data is now provided as part of the End User Functionality component.

Remember that to enable the end user to use Print Data, you need to enable this option

in the Task Properties dialog box. It is normally set to No.

The utility uses the DataViewToXXX functions that were released in previous versions.

When the end user wants to print, they receive the Print Data dialog box. The look and

feel of the Print Data dialog box is similar to the V1.x dialog box.

V1.x V3.x

End User Functionality 49

When selecting the Text file option from the Type property, the Create File and Print

action is not supported. Therefore, the Open Printer Dialog check box is also not

displayed.

When selecting the HTML file option from the Type property, the Create File and Print

action is not supported. However, if you define the file name with an HTM or HTML

extension and select Create File and Open, the operating system will display the file in

the default program, normally a browser. You can then print from there.

If you want to provide the end user with a more sophisticated report generator, you

can add the ReportGenerator component to your application.

Unsupported Features
The Change index option is no longer supported.

The View by Key option is no longer supported. The user can add the sort that they

want.

The Redirect Files option is no longer supported.

In the I/O Devices repository, the Media option of Console is no longer supported.

This will generate a Checker error. You can use a Graphic Printer with Print

Preview=Yes to display the report.

End User Functionality 50

Exercise
In this exercise you will make changes to the End User Functionality application,

specifically to the Print Data mechanism. Remember to back up the project and the ecf

file before continuing.

1. In the Print Data dialog box, if the user selects a Text file, then add a Create

and &Print option. The others remain the same. For the purpose of printing you

can use a Notepad.exe /p parameter:

notepad.exe /p <filename>

This is known to work in Windows XP and Windows 7.

2. Add a filter so that certain fields will not be displayed in the Print Data dialog

box. Implement this by adding ** before the name of a variable.

Summary
The End User functionality provided in previous versions was part of the engine. You

had no control over the display.

The End User Functionality component is provided as an open source. You can make

the changes you require to improve the end-user experience. In the exercise, you made

some changes. Remember that you need to back up the previous project. Take into

account that when you upgrade to a new version, it will override your changes.

Additional Changes 51

Additional Changes
There are more changes to this exciting new product.

This lesson covers several topics including:

 Task behavior changes
 Environment changes
 Runtime changes

Lesson 7

Additional Changes 52

Task Behavior Changes
There are some changes that you need to be aware of that are not covered in other

lessons in this seminar.

Task Properties

The Foreground Window property is not supported. In V1, it appeared only when the

SpecialOldZorder special flag was set to Y.

The following task modes are not supported for Online tasks: Delete, Locate, Range,

Key, Sort, Files, and Options (when used as initial task mode and raised by the

user). When you convert your project, if you have selected one of the above modes,

the Initial mode property will be blank. You should select one of the other modes.

Task Modes

The following task modes are no longer supported in an interactive task: Delete,

Locate, Range, Key, Sort, Files and Options.

Control Verification

In previous versions, the Control Verification logic unit was invoked only when

navigating between records with the mouse. In Magic xpa, Control Verification is

invoked when navigating between records both with the keyboard and the mouse.

Changed Functions

The following functions were changed:

 DirDlg – Opened the Windows Choose Directory dialog box and returned a full
path to the selected directory. The syntax of the DirDlg function is now the same as
ClientDirDlg(description, initial directory, show new folder). This is because some
arguments are not supported in .NET.

 CtrlHWND and WinHWND – In previous versions, these functions returned the
handle of a control or a window for use in external dlls. These now return handles
to .NET objects that you can use as references in a .NET library using the
FormHandle function. They will no longer work in Win32 dlls.

 HitZOrdr – The function returned the Z-Order number of a control. The function has
now been removed. The Conversion utility will not delete the removed function from
the Expression Editor. You should manually fix the syntax errors caused by this
change.

Additional Changes 53

 In the V1 Online version, some functions, such as InTrans and ViewMod, were
always re-evaluated, even if there was no variable in the expression. This behavior
was changed and the expression that contains functions is now re-evaluated only if
the expression has a variable that was changed.

You can achieve the previous behavior as follows:

1. Add a Virtual variable (with Part of dataview=No) to the program.

2. Update the variable in the Record Prefix with False.

3. For ViewMod() – Add a handler on an Expression event with the

following condition: ViewMod(0) AND A<>ViewMod(0) [where A is

the variable]

In the handler, update the variable with ViewMod(0).

4. For InTrans() – Add a handler on the Control Modify internal event

In the handler, update the variable with InTrans().

That's it. Now the variable is updated accordingly and can be used on
the form.

Parallel Execution

The Modal Window type now behaves as the old Application Modal, meaning that

the current form locks all open windows in the application. The Application Modal

Window type was removed.

Window Pulldown Menu

The Window menu will display all windows defined with Show in Window

menu = Yes. The More Windows option is obsolete and unsupported. When migrating

to Magic xpa, the More Windows menu entry is not removed and will still appear

during deployment. Activating the option will be ignored. Consider manually removing

this menu entry.

Environment Settings
In addition to the MDI environment settings that were removed and discussed in an

eaerlier lesson, the following environment settings have also been removed:

 Deployment Custom Copyright (RtUserCopyright)
 Display Copyright Messages (CopyrightMessages)
 Indent Characters (IndentCharacters)
 Input Date (InputDate)
 Logo File (LogoFile)

Additional Changes 54

 Pulldown Menu Close Timeout (MenuCloseTimeout) – Magic xpa now uses the
Windows default.

 Image Cache Size (ImageCacheSize)
 Check Image Change Time (ImageCacheCheckTime)

Window Focusing
Window focusing was changed and the Windows operating system will now set the

window focus according to the last control in focus. This means that:

 If during the execution of a report, a change is made in the GUI Display window,
such as a focus change after raising a Next Field event, the Print Preview window
will be seen behind the application window.

 If an external software is invoked from a batch program, the external software
window will be seen behind the application window.

Magic xpa Runtime
The Magic xpa Runtime engine's built-in MDI was removed. This means that:

1. The Runtime engine (MgxpaRuntime.exe) can run only if a start application was

defined. To let your end users execute several applications, they need a

different shortcut for each application. In the shortcut's Target field you specify

the location of the .ecf file.

2. The Runtime engine no longer provides environment editors. Instead, a new

utility named MgxpaSettings.exe is available in the root folder of the

application. This utility lets you modify the environment settings (such as

settings, colors, and fonts) or the users rights without using the Studio.

Start Application

In V1, you were able to load the runtime executable and to enable the end user to

select which application to open.

The Magic xpa Runtime executable will not load, unless a valid application file has

been provided in the magic.ini property named StartApplication.

If you need to load a number of applications, you will need to define shortcuts and use

INI overrides. Remember to include /[MAGIC_ENV]StartApplication. Remember that

you can use the override in the shortcut path or by using an override file.

Your shortcut may now look like this:

"c:\MSU\Migration to V3\ MgxpaRuntime.exe" /[MAGIC_ENV]StartApplication=

"c:\MSU\Migration to V3\Travel.ecf"

More information can be found in the Mastering Magic xpa section of the Help.

Additional Changes 55

Internal Events

In V1, when there was a Control Hit event with Propagate=No on a choice control, the

clicked value was not selected and in V3 it is selected.

The following deprecated events were removed:

 Navigation events: Begin Form, Begin Page, End Form, End Page, More Windows
 Editing events: Insert Object, Mark Next Page, Mark Previous Page, Mark To

Beginning, Mark To End
 Application events: About uniPaaS
 Task events: From Value, OK, Redirect Files, To Value, View by Key
 User Range/Locate events: Clear Template, Clear Value, Define Expression
 Settings events: Colors, Communications, DBMS, Databases, Environment, Fonts,

HTML Styles, Keyboard Mapping, Languages, Logical Names, Logon, Print
Attributes, Printers, Secret Names, Servers, Services, User Groups, User IDs, Visual
Connection

 Miscellaneous events: Delete All, Help Topics, Paste Link, Update link

Encrypted SQLite Database Support
The SQLite database can now support encryption.

The encryption password is defined in the database properties.

It is not possible to migrate an existing non-encrypted SQLite database to an encrypted

database. If you have an existing application with an SQLite database and you want

to use encryption, you should define a different database with encryption and

synchronize your data to this database.

Additional Changes 56

Summary
In this lesson, you learned about other changes in the new version.

You learned about features that were modified in the program, such as the Task

options, the Control Verification logic unit and functions that were modified or

removed.

You learned about properties that were removed from the Magic xpa Environment

interface.

You learned that the Magic xpa runtime can only be executed if a valid application file

has been provided.

Solutions

Solutions 58

Solutions 59

Lesson 4 – GUI Frames

Travel Destinations

You are asked to define a program that displays the list of locations that are available

as travel destinations.

The programs that you can use are found in the Frames folder of the Program

repository. If you make changes to the programs, it is good practice to copy them so

that you can always return to the original state.

1. Copy the program named Locations. Rename it to Possible Locations.

2. Zoom into the Possible Locations program.

3. Zoom into the Form Editor (CTRL+3).

4. Duplicate the Possible Locations form.

5. Set the name of the first copy to Travel Destinations and set the Interface type to

GUI Frames. You will get a dialog box asking whether to delete all controls.

Select Yes.

6. Zoom into the Frames form. Select the second option from the frames

palette, which looks like the image on the right.

Now you will define the frames:

7. Park on the top frame. This will be the master frame.

8. In the frame properties, set the Connect to property to Form.

9. In the PRG/TSK/FRM num property, zoom and select the Possible Locations

form.

10. Park on the top frame and use the context menu to select Fit to Form. The top

frame will now be resized accordingly.

The master frame is now defined, now you need to define what will be displayed in

the frame:

11. Park on the left frame in the lower half.

12. In the frame properties, set the Connect to property to Program.

13. In the PRG/TSK/FRM num property, zoom and select the Airlines Flying

program.

14. The program receives a parameter. Zoom into the Arguments property and

send the Location_code as an argument.

15. Park on the right frame in the lower half.

16. In the frame properties, set the Connect to property to Program.

17. In the PRG/TSK/FRM num property, zoom and select the Who arrived

program.

Solutions 60

18. The program receives a parameter. Zoom into the Arguments property and

send the Location_code as an argument.

19. You can now execute the program.

Solutions 61

List of Deals

As an extra example, you are asked to display the list of deals in the top frame of the

Possible Locations program. In this case, using frames is not an ideal solution. Using a

subform is a better solution.

1. Zoom into the Possible Locations program.

2. Zoom into the Possible Locations form.

3. Add a Subform control under the image. You need to increase the size of the

form to add the Subform control.

4. Set the Placement to 50,0,100,100.

5. Set the Connect to property to Program.

6. In the PRG/TSK/FRM num property, zoom and select the Deals program.

7. The program receives a parameter. Zoom into the Arguments property and

send the Location_code as an argument.

8. You can now execute the program.

You have just seen an example where it was easier to use a subform rather than a

frame.

Solutions 62

Customer Orders

In the lesson, you defined a program named Customers that displays the list of

customers and the list of their orders. However, each order also has details, the

locations and the dates of each trip. You were asked to add the details of each order

in a frame to the right of the list of orders. You could implement this as a subform, but

then the user will have no control over its size. You will define this as a frame.

1. Zoom into the Orders program.

2. Zoom into the Form Editor (CTRL+3).

3. Duplicate the Orders form.

4. Set the name of the first copy to Order Frames and set the Interface type to GUI

Frames. You will get a dialog box asking whether to delete all controls. Select

Yes.

5. Zoom into the Order Frames form. Select the fourth option from the

frames palette.

Now you connect the original form to the left frame:

6. Park on the left frame. This will be the master frame.

7. In the frame properties, set the Connect to property to Form.

8. In the PRG/TSK/FRM num property, zoom and select the Orders form.

9. Park on the left frame and use the context menu to select Fit to Form. The frame

will be resized accordingly.

Now you call the order details program from the right frame:

10. Park on the right frame.

11. In the frame properties, set the Connect to property to Program.

12. In the PRG/TSK/FRM num property, zoom and select the Order Lines program.

13. The program receives a parameter. Zoom into the Arguments property and

send the Order_Number as an argument.

14. Park on the right frame and use the context menu to select Fit to Form. The

frame will be resized accordingly

15. You can now execute the program.

This solution shows an example of using a nested frame.

Solutions 63

Lesson 5 – End User Functionality

Changing the Print Data

The Print Data mechanism in the End User functionality works like this:

Adding Print Functionality

To add print functionality, you need to modify the display and the execution.

Before you start, back up the End User Functionality project and the ECF. The sources

are found under the Magic xpa installation, in the Add_On directory.

1. Open the UserFunctionality project.

2. Zoom into the OL:PrintData program.

3. Zoom into the Form Desinger.

4. Park on the v.Action combo box.

You need to make some changes here so that when the type (v:Type) is a Text file, the

options in the combo box will change.

5. Zoom into the control properties.

6. Park on the Items List property. Expand the property and zoom into the

Expression Editor. Enter the following expression: 'C,O'&IF (v:Type='T',',P','')

v:Type contains whether this is Text, HTML or XML. In the expression, you are

adding the P option if this is a text file.

Main Program

Initialize
Manager

(ManageScreen)

Display Screen

(PrintData)

Execution

(PrintDataExecution)

The Main Program traps the

Print Data event and calls a

program named Initialize. It

then passes control to the

manager task.

Solutions 64

7. Park on the Display List property and zoom into the Expression Editor. Enter the

following expression:

'&Create file,Create and &Open file'&IF (v:Type ='T',',Create and &Print

file','')

In the expression, you are adding the Create and &Print file option if this is a

text file. Do not forget the preceding comma.

You now need to handle what happens if the user selects Print. Zoom into the

OL:PrintDataExecution program.

8. In the Task Suffix logic unit, zoom into the Block If section.

9. Add an Invoke OS Cmd operation and set the expression to:

'Notepad.exe /p "'&Trim(gv:FileName)&'"'

10. Set the condition for this line to gv:Action='P'

The /p parameter of Notepad will print the file and then close itself.

Remember this solution is an example and currently works on Windows XP and

Windows 7.

Filtering Field Names

One of the challenges is to filter some fields that you do not want to be in the list. This

is a simple process. The field names are fetched using the DataViewVars function. To

filter a certain name you can add a prefix.

1. Open the UserFunctionality project.

2. Zoom into the Initialize program.

3. Zoom into the Data View Editor.

4. Add a Virtual Numeric variable named v:Order with a length of 5. You can

use the Order model.

5. Zoom into the Logic Editor and zoom into the Block While section.

6. Add a Block If section within the Block While section.

7. Set the condition to:

Left (VecGet (v:TaskVariableList, LoopCounter ()),2)<>'**'

If the first two characters of the variable name are **, then the processing will

not enter the block.

8. Add an Update operation and update the v:Order variable with v:Order+1.

9. Move the Call Program operation, which is calling the AddToVariableList

program, to within the Block If section as the second operation.

10. Zoom into the Arguments dialog box and pass the v:Order variable to the

pI:Idx parameter and also to the pI:Available parameter.

Solutions 65

The Block While section will look something like this:

You can now run a program for printing. Remember that if you want to eliminate a

field from being displayed in the list, you need to add ** to the field name in the task.

Solutions 66

	Migration from uniPaaS V1.x to Magic xpa 3.x
	Introduction
	Seminar Prerequisites
	About the Seminar
	Magic Software University
	How to Use this Guide
	Exercises
	Additional Materials

	Major New Capabilities
	Runtime Engine Using WinForms Controls
	.NET Code and Controls
	Form Designer Based on Visual Studio
	Mobile Applications
	Offline Applications
	In Memory Data Grid Database
	In Memory Data Grid Middleware

	Migrating Your Project
	Fonts
	Colors
	Migrating a uniPaaS V1.x Project
	Converting an Application with Components
	Importing an Application or Part of One

	Suggested Methodology
	Exercise
	Summary

	Magic xpa MDI
	MDI and SDI
	Multiple Document Interface (MDI)
	Single Document Interface (SDI)

	MDI
	Main Program Form
	Application Properties
	Application Icon
	Application Caption
	Modified Application Properties

	Environment Properties
	Status Bar
	MDI Color
	MDI Client Area
	Exercise
	Summary

	UI Changes
	Form Designer
	Expression Editor
	Form Properties
	Startup Position
	Form State Identifier

	Control Properties
	Top / Left
	Height / Width
	Style and Border Style
	Horizontal Alignment
	Z-Order Changes

	Text Controls
	RTF Controls
	Edit Controls
	Radio Button Controls
	Static Controls
	Table Controls
	Image Controls
	Push Button Controls
	Choice Controls
	Group Controls
	Tab Controls
	Tree Controls
	Subform Controls
	Unsupported Controls
	ActiveX and OLE Controls

	Summary

	GUI Frames
	Why Use Frames?
	Using Frames
	Automatic Refresh
	Frame Name
	Dynamic Display
	Retain Focus

	Splitter Conversion
	Splitter Placement

	Exercises
	Summary

	End User Functionality
	Adding End User Functionality
	Locate Row
	Ranges
	Sorting
	Print Data
	Unsupported Features
	Exercise
	Summary

	Additional Changes
	Task Behavior Changes
	Task Properties
	Task Modes
	Control Verification
	Changed Functions
	Window Pulldown Menu

	Environment Settings
	Window Focusing
	Magic xpa Runtime
	Start Application

	Internal Events
	Encrypted SQLite Database Support
	Summary

	Solutions
	Lesson 4 – GUI Frames
	Travel Destinations
	List of Deals
	Customer Orders

	Lesson 5 – End User Functionality
	Changing the Print Data
	Adding Print Functionality
	Filtering Field Names

