
Connecting the dots between

CI-CD, GIT
and Magic xpa

This document provides an overview on the following subjects:

Magic xpa and version control systems

What is version control, and how is it used in a development environment?

What is an agile development methodology?

Magic xpa and Git

What is Git, and why should it be a part of your Magic xpa development methodology?

What is CI/CD, and how does it connect to DevOps?

How can a development team and its management benefit from using CI?

2

2

3

4

5

6

8

 2 | ©2020 Magic Software Enterprises Ltd.

Types of Version Control systems

Centralized VCS

Distributed VCS

These systems (such as CVS, Subversion, VSS, TFS) have a single server that
contains all the versioned files and a number of clients that check out files from that
central place. For many years, this has been the standard for version control.

In a DVCS, clients don’t just check out the files’ latest snapshot; instead, they fully
mirror the repository, including its full history. Thus, if any server dies, and these
systems were collaborating via that server, any of the client repositories can be
copied back up to the server to restore it. Every clone is a complete backup of all
the data. Most of the operations are done through the local repository.

Version control systems are a category of software tools for managing changes to
source code over time.

Version control tools keep track of every modification to the source code. If a mistake
is made, developers can roll back the changes made or compare their code with earlier
versions to help fix bugs and errors while minimizing disruption.

Why is version control used in a development environment?

• Maintain a complete long-term change history of every file

• Branching and merging: allow team members to work concurrently on independent streams of changes

• Traceability: Trace each change made to the code and annotate each change with a message describing the
 purpose and intent to assist with root cause analysis and other forensics

• Task management: Version control tools connect with project management and bug tracking software such as Jira

What is Version Control?

https://www.atlassian.com/software/jira

 3 | ©2020 Magic Software Enterprises Ltd.

Agile software development is an umbrella term for a set of frameworks and practices based
on the values and principles expressed in the Manifesto for Agile Software Development and
the 12 Principles behind it that was released in 2000 and gained tremendous popularity as a
common approach to software development since.

The agile approach seeks the continuous delivery of working software created in rapid
iterations. In practical terms, agile development is all about delivering small pieces of working
software quickly and continuously.

Usually, agile software development requires small teams of software developers and business
representatives to meet in-person throughout the software development life cycle. Agile is a
lightweight approach to software documentation that embraces—rather than resists—changes
at any stage of the life cycle.

A shortcut for Development Operations, DevOps is about bringing together historically separate
functional areas. It involves bridging the gap between software development (“Dev”) and IT
operations (“Ops”) teams, often to be able to release software faster and with better stability.

Since its introduction about a decade ago, DevOps has become an umbrella buzzword of sorts
for any and every trend in the software development + IT operations space. DevOps is still
evolving, encompasses so many areas, and is adapted and adopted based on its specific business
objectives, priorities, and existing knowledge base.

Agile methodology

What is DevOps?

https://www.agilealliance.org/agile101/12-principles-behind-the-agile-manifesto/
https://www.agilealliance.org/agile101/12-principles-behind-the-agile-manifesto/

 4 | ©2020 Magic Software Enterprises Ltd.

Git is, by far, the most widely used version control system in the world today. Numerous commercial as
well as open-source software projects rely on Git for version control.

Git was developed by Linus Torvalds, the creator of Linux, in 2005 for the development of the Linux
kernel, with other kernel developers contributing to its initial development. Git is free and open-source
software distributed under GNU General Public License Version 2.

Git is designed for coordinating work among programmers, but it can be used to track changes in any set
of files. Its goals include speed, data integrity, and support for distributed, non-linear workflows.

Having a distributed architecture, Git is an example of a DVCS (hence Distributed Version Control
system). In Git, every Git directory on every computer is a full-fledged repository with a complete history
and full version-tracking abilities, independent of network access or a central server. Rather than having
only one single place for the full version history of the software as is common in once-popular version
control systems like CVS or Subversion.

In addition to being distributed, Git has been designed with performance, security, and flexibility in mind.

The major difference between Git and other version control systems is the way Git
stores and retrieves the data.

Conceptually, most other systems store information as a list of file-based changes.
These other systems think of the information they store as a set of files and the
changes made to each file over time (this is commonly described as delta-based
version control).

Git thinks of its data more like a series of snapshots of a miniature file system. With
Git, every time you commit or save the state of your project, Git takes a picture of
what all your files look like at that moment and stores a reference to that snapshot.

What is Git?

What is the difference between Git and other VC systems?

Git Repository
The purpose of Git is to manage a project, or a set of files, as they change over time. Git stores this
information in a data structure called a repository.

A Git repository tracks all changes made to files in your project, building a history over time.

 5 | ©2020 Magic Software Enterprises Ltd.

The Git feature that really makes it stand apart from nearly every other SCM out there
is its branching model.

Git allows and encourages you to have multiple local branches that can be entirely
independent of each other. The creation, merging, and deletion of those lines of
development takes seconds.

Branching and Merging

Git is fast. With Git, nearly all operations are performed locally, giving it a speed
boost over centralized systems that constantly have to communicate with a server.

Lightweight and Fast

One of the most useful features of any Distributed SCM, Git included, is that it's
distributed. This means that instead of doing a "checkout" of the current tip of
the source code, you do a "clone" of the entire repository.

Distributed

It's impossible to get anything out of Git other than the exact bits you put in. The
data model that Git uses ensures the cryptographic integrity of every bit of your
project. Every file and commit is check-summed and retrieved by its checksum
when checked back out.

Data Assurance

Unlike the other systems, Git has something called the "staging area" or "index.”
This is an intermediate area where commits can be formatted and reviewed before
completing the commit.

Staging Area

What are the main attributes and advantages of Git?

Magic xpa supports version control systems such as TFS, Subversion providing they have an
MSSCCI interface. Magic xpa supports Git, which is a distributed VCS. (refer to Git below)

The application size is not a factor; Git can support any kind of application.

No. Even small teams or one-man shops can use Git and gain from its advantages.

Git can be used with all projects, including existing ones. Usually, a development team would prefer
to keep the history of an existing project once managed by some other VCS, in Git.

Does Magic xpa support version control systems?

Does Git apply only to huge applications?

Is Git relevant for a single developer software house?

Can Git be used for the existing projects or only for new projects?

https://docs.microsoft.com/en-us/azure/devops/repos/tfvc/
https://subversion.apache.org/

 6 | ©2020 Magic Software Enterprises Ltd.

When working with Git, development teams make use of branching and merging to support agile
development. Since Magic xpa has an internal code structure, MSE provides a tool for Comparing
and Merging its XML sources.

This tool has a unique user interface, similar to the Magic xpa studio, comparing and showing the
differences between sources in different branches, and providing merging capabilities, therefore
referred to as “Compare & Merge.”
The C&M tool’s license is per developer and has to be purchased via the local Magic branch.
The C&M tool needs to be installed on every dev machine and then activated with the license
provided by MSE.

Once you open a project that is under a Git repository for the first time, Magic xpa will ask you for
the location of the merge.exe executable.

How do I get started with Magic xpa and Git?

The CI/CD is one of the best practices used in DevOps for delivering code changes
more frequently and reliably.

What is CI/CD?

Developers practicing continuous integration merge their changes back to the main
branch as often as possible. The developer's changes are validated by creating a build
and running automated tests against the build. By doing so, you avoid the integration
hell that usually happens when people wait for release day to merge their changes
into the release branch.

Continuous integration puts a great emphasis on testing automation to check that the
application is not broken whenever new commits are integrated into the main branch.

Continuous integration

Continuous delivery is an extension of continuous integration to make sure that you
can release new changes to your customers quickly in a sustainable way. This means
that you also have automated your release process on top of having automated
testing, and you can deploy your application at any point of time.

In theory, with continuous delivery, you can decide to release daily, weekly,
fortnightly, or whatever suits your business requirements. However, if you truly want
to get the benefits of continuous delivery, you should deploy to production as often as
possible releasing small batches that are easy to troubleshoot.

Continuous Delivery

 7 | ©2020 Magic Software Enterprises Ltd.

Git is the most widely used version control system in the world and is built for continuous
integration. It supports an efficient branching and merging mechanism. Git is the de facto standard
for agile software development when it comes to version control systems.

GIT is flexible enough to support a range of workflows that suit any given software team’s needs.
It’s distributed -- rather than centralized – nature gives it superior performance characteristics and
allows developers the freedom to experiment locally and publish their changes only when they're
ready for distribution to the team.

Besides the benefits of flexibility and distribution, there are key functions of Git that support and
enhance agile development. Think of Git as a component of agile development; changes can get
pushed down the deployment pipeline faster than working with monolithic releases and centralized
version control systems. Git works the way your agile team works (and should strive to work).

How does Git fit into CI/CD and the agile methodology?

Continuous deployment goes one step further than continuous delivery. With this
practice, every change that passes your production pipeline stages is released to your
customers. There's no human intervention, and only a failed test will prevent a new
change to be deployed to production.

Continuous deployment is an excellent way to accelerate the feedback loop with your
customers and take the pressure off the team as there isn't a Release Day anymore.
Developers can focus on building software, and they see their work go live minutes
after they've finished working on it.

Continuous deployment

 8 | ©2020 Magic Software Enterprises Ltd.

PUSH

TESTPushing code to a
shared repository
(develop branch) for
integration testing

Testing with an automated
process that builds the app
in a dedicated server to
confirm and validate the
integration of new code in
current code

Fixing any bugs, malfunctions or
anomalies detected, before continuing
to add more features and Continuous
Deployment (CD)

1

2

FIX 3

A CI/CD pipeline is a series of steps that must be performed in order to deliver a new
version of the software.

A CI/CD pipeline introduces monitoring and automation to improve the process of
application development, particularly at the integration and testing phases, as well as
during delivery and deployment. Although it is possible to manually execute each of the
steps of a CI/CD pipeline, the true value of CI/CD pipelines is realized through automation.

The steps that form a CI/CD pipeline are distinct subsets of tasks grouped into what is
known as a pipeline stage. Typical pipeline stages include:

CI/CD pipeline

• Better collaboration between the development teams, provides better visibility and communication.

• Pushes developers to create modular, less complex code

• Optimized processes and avoids last-minute chaos at release dates

• Awareness of project status through automatic generation of metrics, such as code coverage,
 complexity, and features completed

• Constant availability of a “current” build for testing, demo, or release purposes

• More time available for adding features

• Saves time and money in the project lifecycle

• Early detection and tracking of integration bugs, eliminating long and tense integrations

• Frequent committing of the code for integration tests prevents integration problems; only a few
 changes are lost when reverting to a bug-free state.

• Focus on developing functional, quality code and supporting the development of team momentum

• Less time testing and debugging

• Immediate feedback on the system-wide impact of local changes

Magic has plans to expand its product to include more features supporting CI/CD, allowing seamless
integration of Magic xpa as an IDE with CI/CD pipelines. These include the ability to run Magic xpa’s
checker in the background, pre-load checker output onto the studio, support for CI DevOps operations
on Linux, and more.

What would my management gain from adopting the CI/CD
development methodology?

What would the development team gain from adopting CI/CD
development methodology?

Does Magic have any plans to provide more CI/CD related
features within the product?

Visit us at:
https://www.magicsoftware.com/app-development-platform/xpa

https://www.magicsoftware.com/app-development-platform/xpa

